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Abstract—Fully electric vehicles are rapidly gaining user and 
market interest worldwide, due to their zero direct emissions, 
appealing driving experience and fashionable perception. Unfor-
tunately, cost, range and reliability have not reached the desired 
targets yet. Since consumers are prone to spend money to have a 
more reliable system, Design-for-Reliability will be a useful tool for 
the Design of tomorrow’s EVs, justifying part of the increased cost 
for these products. In this work, a vertical model-based approach 
to design-for-Reliability of power converters for EVs is presented, 
paying special attention to thermally-induced aging. The design 
starts from various driving cycles, properly assembled to describe 
the vehicle mission, then load profiles for the converters are found 
and the resulting thermal stress is quantified. The converter life-
time can be estimated, taking into account also parameter disper-
sion, and requirements for the active thermal control of the parts 
modeled achieved, thus giving practical information to the system 
designers.

Index Terms—Design-for-Reliability, driving cycles, electric ve-
hicles, model-based design, power converters.

I. Introduction

ELECTRIC Vehicles (EVs) and, especially, Fully Electric 
Vehicles (FEVs) are gaining more attention and market 

share every day. Things changed a lot with respect to the 
recent past: Internal Combustion Engines (ICEs) are getting 
difficult to design to fulfill pressing limitations from the par-
ticulates and carbon dioxide points of view. In the meantime, 
different car makers put many EV models on the market, 
dispelling the myth that mobility by electric energy is un-
fashionable [1]-[3]. 

Despite this positive trend for EVs, some issues still require 
close attention: the charging infrastructure needs to be widened, 
battery performance should be improved, the cost reduced and 
reliability increased [4], [5]. The last two points are somehow 
related: design and production costs are high because sales vol-
ume is still small, but also because creating affordable EVs re-
quires a lot of research and manufacturing effort. Moreover, the 
electric part of a vehicle is still perceived as unreliable by many 
users, even by those that drive modern yet ICE-based vehicles.

In the continuous effort to reduce both cost and time-to-mar-

ket, as well as to increase safety, the automotive industry intro-
duced massively model-based design into its project workflow 
[6]-[8]. Certainly, this methodology can be applied to meet all 
the performance metrics of a vehicle as well as to improve the 
design of the implementation platforms which are in charge 
to host the control algorithms [6]. Another advantage deriving 
from the model-based design consists in the possibility to lead 
also system-level analysis, hence increasing the integration of 
different physical domains which unavoidably cohabit in com-
plex systems [7]. Moreover, such approach can be leveraged 
to obtain a quantitative assessment of the health and reliability 
of complex and distributed systems [8]. It is thus obvious that 
model-based design is widely accepted by car manufacturers, 
and that new technologies should be developed according to 
this paradigm. Therefore, this work, which settles in the auto-
motive scenario, can be regarded as an effort to provide a novel 
design strategy of power converters from a vehicle-system-level 
point of view.

When reliability of modern power converters is concerned, 
the approach described by Design-for-Reliability (DfR), rather 
than reliability testing, is the preferred choice, as it has already 
been proposed for photovoltaics (PV) and energy systems based 
on renewables [9]-[11]. Indeed, for these applications life-time 
prediction is very important because the cost of renewable ener-
gy and hence its greater convenience over fossil energy depends 
directly on the number of faults and unexpected maintenance 
interventions which are required for the proper operation of 
PV and wind plants. Thus, in this work DfR is borrowed from 
the renewable energy field, where it represents a consolidated 
methodology, and it is exploited as a means to make automotive 
power converters more reliable and, consequently, to make EVs 
more desirable for consumers.

Furthermore, it is worth observing that DfR implies a par-
adigm switch towards the so called Physics of Failure (PoF) 
since this approach implies the detection of the root-causes of 
failure as stated in [9]-[11].

In the DfR method the designer effort is concerned with reli-
ability from the early stages of the project. Methodologies that 
account for time dependent parameters and varying operating 
conditions are introduced, besides the more traditional, statis-
tics-based approach.

This work proposes a possible workflow to design reliable 
power converters to be used in EVs, accounting also for de-
sign parameters of the vehicle that do not strictly belong to 
the inverter. To this aim, simulations of one year of realistic 
vehicle use are performed in order to determine the junction 
temperature profile of the power devices given the year-long 
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mission profile. From the obtained temperature profile, rainflow 
counting and reliability models are used to finally determine 
the expected lifetime of the power converters. The simulation 
includes a set of several mechanical, electrical, and thermal 
parameters. The number and type of parameters used, as well as 
several assumptions, have been chosen in order to strike an op-
timal compromise between accuracy and simulation time. The 
parameter values have been determined from various sources, 
including scientific literature (for vehicle mechanical parame-
ters) and device data sheets (for power electronic devices).

This work aims to satisfy both the manufacturer side, provid-
ing a completely model-based flow, and the user side, taking ad-
vantage of DfR to effectively guarantee lifetime and reliability 
performances. Similar works in this field exist; with respect to 
[12], more details are experienced in this work, paying special 
attention to models and focusing less on data collection. Com-
paring this work to [4], here a major effort in the powertrain 
modeling is undertaken, including also e-motor parameters and 
control.

Several of the previous works on this matter rely on motor 
models with a very low detail and assume a linear electrical 
behavior in every operating point. In order to have an accurate 
evaluation of the motor current request for a specific operating 
point, different control techniques must be considered. The 
approach proposed in this paper, takes into account the two 
main working regions of the Interior Permanent Magnet (IPM) 
motors: the Constant Torque Speed Range (CTSR), subject to 
the maximum current limit only, and the Constant Power Speed 
Range (CPSR), where also the maximum voltage limits have to 
be met.

The fitting parameters used in the reliability model (i.e. Cof-
fin-Manson) are unavoidably affected by uncertainty, that is 
usually dealt with by means of Montecarlo analysis [9], [10], 
[11], [13], [14]. The authors of this paper present a Montecarlo 
analysis of the final results to analyze the effects of reliability 
model parameter dispersion.

All the above consider thermally induced material fatigue 
as the main failure mechanism; the battery, that is indeed a key 
part for vehicle system reliability, is neglected for now, since the 
focus is on power converter design. Future work should address 
this weakness.

II. System Requirements

A. Functional Requirements

The realization of EVs, despite being quite complex, is root-
ed in very simple functional requirements: the vehicle should be 
able to carry its passengers wherever they want, in a comfort-
able and inexpensive way, while assuring safety into disparate 
traffic and environmental conditions. The main difficulty is the 
determination of a clear and quantitative definition of those 
aspects. Comfort, environment and traffic explicit models are 
outside the scope of this work, but “carrying passengers to their 
destination” can be accounted for by means of driving cycles 
(DCs). DCs come from the effort to substitute complex and 

random processes with repeatable and deterministic quantities, 
without losing the statistical properties of the former [15], [16]. 
From the lifetime point of view, a single driving cycle is sup-
posed to have little impact on the overall system lifespan, since 
durations are usually limited to half an hour; moreover, they 
are often not so meaningful for the real behavior of a vehicle 
[4]. If “standard” driving cycles are used, it is worth assuming 
a specific distribution of different driving cycles on a longer 
period. This allows to gather more variability than that available 
in a single, specific driving cycle, and to account for day-to-day 
aging of the vehicle system.

B. Reliability Requirements

Reliability requirements for EVs are the same of traditional 
ICE cars: to achieve a wide adoption of the new form of mo-
bility, users should have the possibility to buy a new EV while, 
at least, maintaining the same expected lifetime. This supports 
in amortizing the purchase expense, that is still higher for EVs 
with respect to ICE vehicles. However, it is worth pointing out 
that the operating costs of owning an electric vehicle can be 
lower than those connected to other types of vehicle [3].

Roughly, for a typical consumer, the ownership of a vehicle 
ranges from 10 to 15 years [2], [3]: during this period, the ve-
hicle is expected to be healthy, safe and reliable. As a matter of 
fact, in the United States vehicle and powertrain manufacturers 
must grant a 10 years warranty, which is an apparent indication 
of the minimum life expectation of a generic light-duty vehicle. 
Consequently, also EVs are required to meet at least a compara-
ble lifespan.

III. System Modeling

The vehicle is a complex system; hence its modeling can 
be a difficult task. Various degrees of detail can be retained or 
abandoned, depending on the desired target. In the following, 
the vehicle is described by four models. The first is concerned 
with the mission profile and the dynamic constraints, the second 
describes the electrical machines and their power electronic 
converter, then a thermal model is used to infer the temperature 
of the relevant parts. Lastly, proper reliability models are intro-
duced to complete the tool collection needed for DfR in EVs. 
The symbols used in the following models and their descrip-
tions and units of measure are collected in TABLE I to TABLE V.

A. Dynamic-Energetic Model

The dynamic request coming from a driving cycle can be 
transformed into a power request by using the dynamic-energetic 

TABLE I
Physics Parameters Used into Model Equations

Symbol Description Unit

Δt
ρ
g

Simulation time step
Air density

Gravity acceleration

s
kg/m3

m/s2
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model presented here. It accounts for the inertia of both wheels 
and electric motors, the vehicle mass, aerodynamic and rolling 
friction. It supposes that the vehicle has nm electric motors, each 
coupled to the wheels by a fixed-ratio (τ) gearbox and, possibly, 
a differential gear. The differential is neglected from the ener-
getic point of view, since it is assumed ideal. This is consistent 
with the driving cycles not providing information about the tra-
jectory followed by the vehicle.

Under these assumptions, the overall friction force acting on 
the vehicle is ascribed to rolling and aerodynamics, represented 
by the first and second terms of (1), respectively. There, it can 
be seen that a square-law dependence on the vehicle speed v 
exists.

 	 (1)

The power needed to change the vehicle speed in a certain 
amount of time depends on the frictional force that needs to 
be won (Fμ), the vehicle parameters and the magnitude of the 
speed change, as described by (2), which is obtained from the 
kinetic energy conservation.

  	 (2)

The power request will be satisfied by the traction system, 
possibly distributed on several (nm) motors; under the hypothe-
sis of a straight-going vehicle, the torque (T) and speed (ω) are 
almost equally distributed among them. Their effective value 
depends also on the fixed ratio τ of the gearbox, as stated by (3).

 	 (3)

Equations (1)-(3), when fed with a speed vs. time profile, i.e. 
a driving cycle, can thus yield the torque and electrical speed 
request for a single e-motor inside the powertrain, keeping into 
account many vehicle parameters.

B. Electric Model

The electric model is devoted to project the power request on 
motors and power converters. The model is considered an ideal 
transducer (without losses), while the non-ideal behavior of the 
converter (motor drive) is accounted for, to obtain the thermal 
stress that it undergoes during the operation of the vehicle. The 
electric model is thus split into two parts: the inverse motor 
model and the inverter loss model, presented below.

1) Inverse Motor Model
In this work, the e-motor is supposed to belong to the cate-

gory of IPM synchronous machines, since this is the most com-
mon choice for EVs; the generated torque can approximately 
be expressed as in (4), where λm, Ld and Lq are considered 
constant over the entire working range (hypothesis of linearized 
motor).

 	 (4)

The second term is a simpler expression that will be used in 
the following to find the explicit control currents for each work-
ing point; the parameters are A = 3pλm/2 and  B = 3p (Ld−Lq)/2. 
For the control currents to be determined, the relevant limits of 
the motor needs to be known: in this model, they are analytical-
ly determined from the motor and drive parameters themselves. 
The limiting values come from the maximum converter current 
modulus (Imax), the maximum phase voltage Vmax (that descends 
from the DC link voltage Vdc , ) and the maximum 

running speed . The explicit limits of volt-
ages and currents in rotating frame coordinates, with ampli-
tude-conserving Clarke-Park transform, are expressed in (5).

 	 (5)

Firstly, starting from Imax , the dq-currents for the maximum 
torque can be determined as in (6):

 	 (6)

so that the maximum torque can be easily computed as 
Tmax = (A + Bid,Tmax)iq,Tmax. Once the maximum torque is known, 
the base speed can be determined as in (7). This quantity is not 
critical for the control, but it is a useful value for debugging the 
model.

 	 (7)

TABLE II
Vehicle Parameters Used into Model Equations

Symbol Description Unit

m
Jw

Jm

r
S
Cx

fo

k
τ

nm

Vehicle mass
Wheel inertia

EM rotor inertia
Wheel radius

Cross-sectional area of the vehicle
Drag coefficient

Friction coefficient, static
Friction coefficient, motion

Reduction ratio motor-wheel
Number of e-motors

kg
kg m2

kg m2

m
m2

–
–

s2/m2

–
–

4Jw nmτ 2Jm



105

When the torque request is below the Tmax limit, a good con-
trol algorithm is represented by the MTPA (Maximum Torque 
Per Ampere) trajectory in the idq plane. This locus is obtained 
by equating (4) to the requested torque Treq , while imposing the 
minimum current modulus (current circle tangent to iso-torque 
curve). The iq current can be obtained using (8):

 	 (8)

This results in a fourth-order polynomial (9); out of the gen-
eral four solutions, the one of interest is the only real and nega-
tive one.

 	 (9)

This approach allows to find the control point necessary to 
achieve any torque below the maximum one, with speed below 
the base value (CTSR operating region). It is possible to deter-
mine the operating voltage of the motor, recalling (10):

 	 (10)

If the threshold of (5) is exceeded, the MTPA trajectory 
cannot be used any longer, and the control point should be 
determined by the flux-weakening technique intersecting the 
current circle with the voltage ellipsis in the dq plane (CPSR 
operating region). This gives the polynomial (11), again with 
order four:

 	 (11)

In this case the desired solution is the maximum among the 
negative (and real) ones. If all those constraints lead to unac-
ceptable solutions, it means that the requested operating point 
is unachievable by the motor. Detailed description and units of 
measure of the parameters of this model are reported in TABLE III.

2) Inverter Loss Model
The inverse motor model described in Section III-B-1) trans-

forms the mechanical requests coming from the vehicle into 
electric requests that need to be fulfilled by the motor converter. 

Those, in turn, determine the inverter losses, that are the main 
cause of thermal cycling of the converter itself, thus leading to 
material fatigue. 

Inverter losses in a traditional three-phase bridge architecture 
for battery-supplied vehicles can be ascribed mainly to the pow-
er switches, since no large magnetic components are involved. 
Device losses are determined by the inverter generated wave-
form, the phase-shift between voltage and current (load angle) and 
the voltage and current moduli, as obtained from the inverse motor 
model. The conduction loss is described analytically by (12):

 	 (12)

To achieve this very concise formulation, some hypotheses 
were needed. Firstly, the output waveform is supposed to be a 
PWM-generated sinusoid, where the third-harmonic injection 
is neglected for simplicity. Then, each device is modeled, in the 
on-state, by a linear relationship (with offset) between current 
and voltage; four independent values are needed to properly 
describe the switch under positive and negative currents, since 
conduction losses are usually different. These values, represent-
ed by Vc, Rc, Vd and Rd in TABLE IV can describe effectively 
both MOSFETs and IGBTs behavior. Since Vd is the switch 
voltage when it carries negative current, it has a negative value, 
while the resistance Rc is positive. For MOSFETs, typically, 
Vc = Vd = 0 because they do not exhibit any threshold behavior, 
but Rc = Rd  > 0, because their behavior with respect to current is 
almost symmetrical. From this it descends that the conduction 
loss of a MOSFET-based converter is flat and independent of 
the load angle, if the current conduction is symmetric in the de-
vice itself.

Equation (12) was obtained averaging, on an output sinusoid 
period, the mean power loss on each PWM cycle, while ac-
counting for the current direction, that is determined by the load 
(motor) angle φ.

A similar averaging approach was used to determine the 
switching losses over a sinusoidal period. In this case a loose 
dependence exists on the voltage, since each commutation hap-
pens with the entire DC link voltage Vdc, here assumed constant. 

TABLE III
Motor Parameters Used into Model Equations

Symbol Description Unit

p
Ld

Lq

λm

Imax

Vdc

ωrpm,max

Number of pole pairs
D-axis inductance
Q-axis inductance

PM linked flux
Maximum current
DC link voltage

Maximum mechanical speed

–
H
H

V s
A
V

rpm

TABLE IV
Inverter Parameters Used into Model Equations

Symbol Description Unit

Vdc

fsw

Vc

Rc

Vd

Rd

Eon

IEon

Eoff

IEoff

DC-link voltage
Switching frequency

Switch voltage drop (I > 0)
Switch on-state resistance (I > 0)

Switch voltage drop (I < 0)
Switch on-state resistance (I < 0)

Turn-on energy
Current of Eon measure

Turn-off energy
Current of Eoff measure

V
Hz
V
Ω
V
Ω
J
A
J
A

II
8
I I
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However, during the sinusoid generation, the current changes, 
and as many switching events as the ratio between the switching 
and the fundamental frequency ( fsw / f0 ) happen. This suggests 
that averaging translates into a finite sum of energy packets; this 
computation was done by approximating the finite sum with a 
definite integral, which holds approximately for fsw / f0 >10. The 
final result is described in (13), where the datasheet values Eon 
and Eoff are scaled by their characteristic current.

 	 (13)

It is shown that, at least under the given approximations, 
the switching loss depends only on the motor current and the 
switching frequency, but neither on the fundamental frequency 
nor on the load angle: this dependence is canceled by averaging 
over the output waveform. The parameters used in the model 
are described in TABLE IV.

C. Thermal Model

The thermal model represents the cooling system and its ef-
fects on the temperature of the parts of interest. This sub-system 
has a serious impact on the overall system reliability, at least for 
the thermally-induced faults. Four relevant points were chosen, 
out of which only three are non-trivial, so a three-time-constants 
network was initially devised. The “ambient” node (A) is kept 
at a constant temperature, while the other nodes are connected 
to each other through a simple Cauer thermal network. The 
non-trivial nodes are: junction (J), which is also where the pow-
er loss source is located, case (C), i.e. the device case, and the 
heatsink (S), that is the main source of cooling in the system.

Given the three time constants, a third-order ODE (Ordinary 
Differential Equation) is expected; an analytical solution is 
possible even in this case, but possibly complex. Moreover, the 
model is intended to be used to simulate an entire year of op-
eration of a vehicle, which is quite a long period. Nonetheless, 
almost all driving cycles available have time base greater or 
equal than one second. With typical devices, the time-dependent 
effects of the junction and case capacitances are almost unno-
ticeable at this bandwidth. The system can thus be simplified, 
retaining all the thermal resistances and the heatsink capacitance 
Cs only.

The result is a simple first-order ODE, that can be straight-
forwardly solved for the heatsink temperature as in (14), where 
Ploss is the device power loss and Ts,0 the temperature at the 
beginning of the sampling period (which coincides with the nar-
rowest driving cycle time base):

 	 (14)

Neglecting both Cj and Cc, the case and junction temperatures 
are determined using only the resistance among those layers, re-

sulting in Tc = Ts + Rcs Ploss and Tj = Tc + Rjc Ploss. The parameters 
are detailed in TABLE V.

D. Reliability Model

The reliability model is usually constituted by a collection of 
models, depending on the failure mechanisms and failing parts 
that are considered. These are collected from literature and com-
puted in parallel, in order to see which is the first mechanism 
that determines the system failure. This technique is coherent 
with the PoF approach that is nowadays preferred to the older 
“testing for reliability” [14].

Before applying the reliability models, out of which we 
selected only that describing the thermal fatigue mechanism, 
the thermal loading of the device inside the converter should 
be analyzed. This can be accomplished by sound counting 
algorithms, among which the rainflow counting is the most re-
nowned.

1) Rainflow Counting
Counting algorithms are used to infer the relevant number of 

fatigue cycles from a general mission profile. The rainflow count-
ing used here is based on the standard [17], as implemented in 
the MATLAB environment. This implementation follows the 
three-point algorithm, but can work on a stream of data, without 
any specific need for sample reordering.

2) Lifetime Models for the Power Devices
When it comes to thermal fatigue in power electronics, the 

Norris-Landzberg model, as a modification of the basic Cof-
fin-Manson equation to include frequency, is the flagship rela-
tionship. Despite more advanced models being available [18], 
the highest hurdle is represented by finding the proper parame-
ters, that allow a precise representation of the device statistical 
behavior.

For this work, the expected number of cycles to failure Nf of 
a specific cycling, with average junction temperature Tj, avg and 
range ΔTj, is obtained by (15), which is the simple Coffin-Man-
son model:

 	 (15)

where kB is the Boltzmann constant and C, a and Ea are the 
reliability parameters, which were obtained from [4]. To take 
into account the distribution of the various cycles, as resulting 

TABLE V
Thermal Parameters Used into Model Equations

Symbol Description Unit

Rjc

Rcs

Rsa

Cj

Cc

Cs

Ta

Junction-case thermal resistance
Case-sink thermal resistance

Sink-ambient thermal resistance
Junction thermal capacitance

Case thermal capacitance
Heatsink thermal capacitance

Ambient temperature

K/W
K/W
K/W
J/K
J/K
J/K
°CPsw

I
IEon IEoff

Rsa Ploss +Ta

ΔT expNf
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from the rainflow counting, the linear damage accumulation as 
described by Palmgren-Miner’s rule was used [19]-[21].

IV. Simulation

To obtain relevant information from the models described 
above, some secondary tasks need to be accomplished. They 
involve driving cycle preparation, transient simulation 
post-processing and, finally, result interpretation. These steps 
are detailed in the following, while the values for the parameters 
used are collected in TABLE VI.

A. Preparation

Driving cycle preparation is essential to obtain practically rel-
evant results. Known cycles (ARTEMIS, EU and USA ones, …) 
were collected and assembled in a long driving cycle (the mas-
ter cycle), which can be regarded as a tangible element of nov-
elty with respect to previous works. The construction procedure, 
in the effort to reproduce a plausible vehicle usage, accounts for 
relatively long stationary phases, with some driving moments 
interleaved. Fundamentally, the aforementioned extended driv-
ing cycle mirrors the endeavor to generate a significant virtual 
mission profile which is conceived to overcome the limitations 
of the single standard driving profiles. Indeed, as pointed out in 
[4], some driving cycles may lack of realism due to underesti-
mate of maximum accelerations and, consequently they may 
mislead in damage assessment on power converters. Moreover, 
it is important to point out that rest phases in driving profiles 
have a paramount role for the sake of DfR of power electronics 
systems because they foster wide thermal cycles: these depict 
generally the major stressor for the electronic components [22].

The master cycle is based on three random variables: the 
drive/no-drive flag (Pd), the driving frame index (Id) and the 
stop duration (Ls). Pd is a Bernoulli random variable, that deter-
mines, at each draw, if the vehicle will move or not in the fol-
lowing driving cycle. The driving probability was set to 10%, to 
describe roughly a 2 hour/day use of the vehicle (approximately  
35·103  km/year), in accordance with statistics asserting that, on 
average, a vehicle is idling more than 90% of the time [22]. If 
the vehicle moves, the Id random variable, with discrete uniform 
distribution, chooses one out of the available conventional driv-
ing cycles. If the vehicle rests, the Ls variable, with uniform dis-

tribution between 0 and 1, determines the rest duration in hours. 
At the moment, no special means to avoid driving by night is 
enforced, nor any feedback on the effective distance traveled.

B. Post-Processing

The transient simulation, running the models of section III, 
determines the junction temperature profile related to the mas-
ter driving cycle, together with other information, such as the 
heatsink temperature, the dynamic request to the motor and the 
electrical quantities.

After that, the junction temperature profile is analyzed by 
rainflow counting and the consumed lifespan for a specific set 
of reliability parameters was determined. Since these param-
eters are usually affected by a large uncertainty, a Montecarlo 
analysis was carried out. Hence, each parameter was changed 
based on a Gaussian distribution with unitary mean and variable 
standard deviation, and the new lifespan determined, always us-
ing the same temperature profile obtained from the simulation. 
This results in a specific lifetime histogram, that can be fitted to 
various distributions to find detailed lifetime metrics.

C. Results

The transient simulation is capable of giving many quantities 
of interest. Some of them are reported in Fig. 1-Fig. 5. The driv-
ing cycle (a short snapshot) is represented in Fig. 1, with the re-
sulting mechanical power request, to be satisfied by the e-motors 

TABLE VI
Parameters Used in the Simulation Presented as Example of the Design Workflow

Δt = 1 s
ρ  = 1.293 kg/m3

g  = 9.81 m/s2

m  = 1500 kg
Jw = 250 × 10-3 kg m2

Jm = 15 × 10-3 kg m2

r   = 180 × 10-3 m
S   = 2 m2

Cx = 0.3
f0   = 10 × 10-3 Hz

k    = 1×10-4 s2/m2

τ     = 7.5
nm   = 1
p    = 4
Ld  = 300 H
Lq  = 800 H
λm  = 85 × 10-3 V s
Imax = 400 A
Vdc  = 650 V
fsw  = 40 Hz

Vc    = 0 V
Rc    = 4 m
Vd    = 0 V
Rd    = 4 m
Eon  = 5.6 mJ
IEon  = 300 A
Eoff = 3.7 mJ
IEoff = 300 A
Rjc  = 0.10 K/W
Rcs  = 0.17 K/W

Rsa = 0.30 K/W 
Cj  = 0 J/K
Cc  = 0 J/K
Cs  = 2000 J/K
Ta  = 20 °C
C  = 302500 K-α

a  = -5.039
Ea  = 9.89 × 10-20 J

Fig. 1. Snapshot of a part of the driving cycle.
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in the powertrain, in Fig. 2. The idq current angle, used to control 
the motor in a rotating reference frame, is depicted in Fig. 3; 
the power loss of a device in the inverter is in Fig. 4. Lastly, the 
device temperatures (junction, case and heatsink) are outlined in 
Fig. 5 stroked, dotted and dashed, respectively.

The results of the rainflow counting are reported in Fig. 6. It 
can be seen that a specific distribution of counts, coming from 
the master driving cycle, is obtained. Each count is used to ap-
ply Miner’s rule and the fraction of consumed lifetime.

The aforementioned post-processing results in a distribu-

tion described by the histogram of Fig. 7, where also Normal, 
Weibull and Log-logistic fitting distributions are represented. 
Fitting the Montecarlo data (104 runs) to specific distributions 
allows to determine quantitatively the lifetime metrics, with 
statistical meaning. In TABLE VII the B10 lifetime, i.e. the time 
after which 10% of the initial population has failed, is reported, 
as well as mean (μ) and standard deviation (σ). B10 can be some-
times more effective that a rough average value in describing 
the expected lifetime from a practical point of view. The distri-
bution of Fig. 7 shows a prominent and fairly narrow peak; con-

Fig. 6. Rainflow diagram of the junction temperature cycles under a one-
year-long driving cycle.
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time (s)

Cu
rre

nt
 a

ng
le

 (d
eg

)

3000 3200 3400 3600 3800 4000

200

150

100

50

0

-50

-100

-150

Fig. 5. Device temperatures due to the loss profile of Fig. 4.

Fig. 7. Lifetime histogram from Monte Carlo simulations, with various fit-
ting distributions.
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sequently, uncertainty on the lifetime model parameters does 
not affect significantly the lifetime estimate.

V. Conclusion

This paper describes a possible workflow to perform mod-
el-based Design-for-Reliability for power converters in EVs. 
Since it encompasses many vehicle parameters, it is able to 
correlate many design choices (also extraneous to the inverter 
itself) to the resulting lifetime change, in a statistical sense.

In the example reported here, a sufficient lifetime, also in the 
B10 sense, was achieved, suggesting the correctness of the de-
sign choices.

Further work will deal with the sensitivity analysis of the 
lifetime to each parameter, while including also the battery 
properties and other aging mechanisms, to describe not only the 
effects on converter life, but also for the entire vehicle reliability.
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