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System Realization of CASHIPS DC High Power 
Test Facility

Xiaojiao Chen, Liansheng Huang, Peng Fu, Ge Gao, Zhiquan Song, Liuwei Xu, Shiying He, 
and Xiuqing Zhang

Abstract—Aims to complete the test of the International 
Thermonuclear Experimental Reactor (ITER) poloidal field (PF) 
converter system, and to meet future continuous upgrading needs 
of a modern industrial power system and scientific research, direct 
current (DC) high-power test facility of Hefei Institutes from Physics 
science, Chinese Academy of Sciences (CASHIPS) is built in 2011. 
As the largest DC high-power test facility in China, the rated steady 
state DC current is 120 kA and the pulse peak current is 500 kA. 
Four thyristor-based AC/DC converter modules are paralleled 
to handle this huge current. In May 2017, 15 testing items are 
accredited by the China National Accreditation Service (CNAS) 
for Conformity Assessment . Up to now, the test for 17 devices of 16 
companies and manufacturers in the world have been completed. 
In this paper, the topology and the control of DC High-Power test 
facility are presented. In addition, the testing capability and the 
completed tests of DC high-power test facility are illustrated.

Index Terms—120 kA steady state DC current, 500 kA pulse 
peak current, DC high-power test facility.

I. Introduction

WITH the development of modern industrial power systems, 
scientific research, the capacity of the high-power electrical 

equipment test facility is expanded and upgraded continuously 
to satisfy the needs of economic and social development. At 
present, there are more than 10 well-known power labs with DC 
high-power test facility all over the world. Most of the leading 
electric companies have their own high-power labs, in addition 
to some independent high-power laboratory. According to the 
investigation, the biggest DC testing voltage is 7 kV and the 
largest DC testing current is up to 320 kA before 2011 [1].

International Thermonuclear Experimental Reactor (ITER) is 
an international collaboration project located in south France to 
demonstrate the scientific and technological feasibility of fusion 
energy for peaceful purposes [2], [3]. The ITER poloidal field 
(PF) AC/DC converter system mainly provides the controlled 
current thereby implementing the plasma shape and position 
control, which is one of the key systems for ITER [4], [5]. 
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The ITER PF AC/DC converter Procurement Arrangement 
(PA) was signed between China Domestic Agency (DA) and 
ITER Organization (IO) in April 2011. The Institute of Plasma 
Physics, Chinese Academy of Science (ASIPP) takes the 
responsibility of ITER PF AC/DC converter PA. The PF AC/
DC converter system is a major AC/DC converter system, and 
the total installation power is 1.2 GVA. The ITER PF AC/DC 
converter system required DC short-circuit impulse test current 
is 400 kA and the DC steady state testing current is up to 100 kA 
for type test [6]. Hence, the existing test facilities cannot satisfy 
the test requirements of the ITER PF AC/DC converter system. 

Considering the testing requirements of ITER PF AC/DC 
converter system components and continuous upgrading 
capacity of high-power test capability, the steady-state 
current of DC high-power test facility is rated at 120 kA 
and the pulse current is 500 kA. 120 kA steady-state current 
make it the largest steady state DC current test facility in 
China until now. The DC high-power test facility of Hefei 
Institutes of Physics science, Chinese Academy of Sciences 
(CASHIPS) is a professional test facility. 15 testing items 
are accredited by the China National Accreditation Service 
(CNAS) for Conformity Assessment in May 2017. The 
relevant reports are accredited by 35 countries including 
France, Germany, Italy, United Kingdom, United States, etc.

Designed and constructed by ASIPP, co-phase counter 
parallel connection topology structure is selected on account 
of the low voltage and the high current of DC high power 
test facility. In this paper, the characters,  parameters 
and operation modes of DC high power test facility are 
presented. In addition, the configuration of the control 
system, hardware and software of the local controller is 
illustrated in detail. Moreover, the relevant qualification 
experiments including the testing capability and some 
completed tests are also provided. The paper is organized 
as follows. The topology and the control of DC high-power 
test facility is presented in Section II and Section III 
respectively. The qualification experiments are performed 
in Section IV. In this part, the experiment of 120 kA rated 
steady state DC current and 500 kA pulse current is carried 
out to demonstrate the testing capabilities. Moreover, some 
typically completed tests are also provided in this part. At 
last, the conclusion is drawn in Section V.

II. Topology of the DC High-Power Test Facility 

A. Topology Structure

Four AC/DC converter modules are paralleled to handle 
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120 kA steady-state DC current and 500 kA pulse current. 
30 kA rated steady-state DC current and 0.5 kV rated DC 
voltage of each converter module make the co-phase counter 
parallel connection topology structure the suitable choice 
for DC high power test facility as Fig. 1. Co-phase counter 
parallel connection topology structure not only reduces the 
current carrying load of transformer individual windings, 
but also reduces the eddy power loss and heat generation of 
the transformer because the adjacent two-phase windings 
currents are reversed. In addition, the magnetic flux density 
in the converter cabinet is near to zero, which improve the 
operating environment of the semiconductor component [7].

IGBT, IGCT and other semiconductor is wildly studied 
and used in high power electronic field [8], [9], [10]. However, 
with the outstanding advantages that heavy current, high 
voltage, relatively small heat dissipation density and low 
cost, the thyristor-based AC/DC converter module is 
chosen and each bridge arm is paralleled with 3 thyristors 
and RC snubber circuit. The type of thyristor is ABB 5STP 
50Q1800.

As shown in Fig. 1, the DC high-power test facility is 
composed by 110/66 kV 100 MVA and 115/66 kV 60 MVA 
autotransformers, four 20 MVA converter transformers, 
four 30 kA/0.5 kV converters, four DC reactors (50 uH), 
load (2.5 mΩ, 5 mH) and sixteen DC disconnectors. Each 

thyristor-based AC/DC converter module is connected to a 
converter transformer. The converter transformers are phase 
shifting to each other in order to implement the 24 pulses 
output in DC terminal thereby eliminating harmonics at 
specific frequencies on the AC side and reducing current 
ripple in DC side. The DC high-power test facility scheme 
and parameters are shown as Fig. 1 [11]. CU1−CU4 are 
the four AC/DC converter modules, KD1-KD16 are the 
DC disconnectors, Lp1−Lp4 are the DC reactors, DCCT0−
DCCT4 are the current sensors [12]. The DC high-power 
test facility is shown as Fig. 2.

B. Operation Modes

The converters can operate in different operation modes 
to satisfy the different test requirements. As shown in 
Table I, the operating modes include single converter 
operating mode, converters in parallel operating mode, and 
converters in series operating mode. DC disconnector array 
is designed to change the circuit connection to implement 
multiple operating modes according to the different test 
requirements. The autotransformers are set in different 
position according to the required maximum voltage and 
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Fig. 1.  DC high-power test facility scheme.

Fig. 2.  DC high-power test facility.

Operation Mode Operation Converter Module

Single converter  
operating CU1 / CU2 / CU3 / CU4 30 kA, 

0.5 kV 

Two converters in  
parallel CU1&CU2 / CU3&CU4 60 kA, 

0.5 kV 

Four converters 
in parallel CU1&CU2&CU3&CU4 120 kA, 

0.5 kV 

Two converters  
in series CU1&CU2 / CU3&CU4 30 kA, 

1.0 kV 

Four converters  
in series CU1&CU2&CU3&CU4 30 kA, 

2.0 kV 

 

Parameter 

TABLE I
Operation Modes
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current ripple, and which is helpful to reduce the current 
ripple in some case.

III. The Control System of DC High-Power Test 
Facility

A. The Configuration of Control System

The test facility control system is divided into the following 
different parts according to the functions: human machine 
interface (HMI) and operation, real-time control, device 
status detection and monitoring, data storage and data 
review, data network release, and interlock. The structure 
of the control system is shown in Fig. 3.

• HMI and operation: to set the operation parameters such 
as waveform preset, converter operation mode, converter 
control mode, and to operate the converter state machine.

• Real-time control: to complete voltage open-loop and 
current closed-loop control operation,  and to change 
the operation mode in real time according to the rectifier 
operating parameters, and to act the interlock action.

• Device status detection and monitoring: to detect 
the status of transformers, rectifiers and switchgears 
periodically, and  to monitor the status. And to act the 
remote operation of switches.

• Data storage and data review: to measure the circuit 
voltage, current of transformer and  converters. To 
store the data and review the data.

• Safety interlock: to act the occupation safety function.
Each part of the control system is interconnected through 

the network. According to the different performance and 
function requirements, the control network is divided into 
two types: shared memory real-time network and Ethernet. 
Each network is independent, and all devices are in the 
same network layer to ensure data transmission efficiency. 
As the core controller of the DC high-power test facility, 
the real-time controller is also called the local controller. 

B. The Local Controller

The local controller is based on Compact PCI computer [13], 

and the Compact PCI chassis is 12V18OPX98Y5VQ2X/
ELMA; According to the real-time reference voltage, the 
trigger angle is calculated by CPU and the CPU board 
type is CP6005; Then, the converter bridge control and 
the trigger pulses generating is implemented by the alpha 
controller. Alpha controller outputs and modulates the 
trigger signal into a 15 kHz pulse to reduce the amplifier 
power and send the trigger pulse at the corresponding time 
to the thyristors by optical fiber, and the alpha controller 
type is CPCI-2008. Each converter module  is controlled 
by an independent alpha controller. The configuration of 
the local controller is shown in Fig. 4. The AD board type 
is CPCI-9116 for analog signal input and the DIO board 
type is CPCI-7432 for digital signal input and output. The 
control block of local controller is shown in Fig. 5.

Fig. 6 shows the cubicle configuration of the local 
controller. The synchronization board is used to obtain 
the synchronization signal. The synchronization signal 
is delivered to the local controller to provide an accurate 
phase synchronization and frequency synchronization for 
the trigger time. The feedback signal and protection signal 
is collected by fast A/D.

IV. Testing Capability 

A. 120 kA Steady State DC Current

The DC test facility is composed of four 30 kA/0.5 kV 
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Fig. 3.  The structure of the control system.

Fig. 5.  The control block of local controller.

Fig. 4.  The configuration of loacl controller.
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converters. These converters could be operated in different 
modes to implement different required output. The output 
performance of different operation mode is shown in 
Table II. 

When the four converter modules are in parallel, the 
steady state output current is rated to 120 kA. The huge 
DC continues current could be outputted to implement 
superconducting coil test, high temperature current lead 
test, DC disconnect test, etc. During steady state operation, 
the current closed loop control is adopted. The typical 
experiment results that rated current of 120 kA is shown as 
Fig. 7. 

B. 500 kA Pulse Current

1) The Output Capability Calculation Based on System 
Parameters

Based on the analysis of the system parameters, the pulse 
current test capability of DC test platform is calculated. 
The equivalent circuit of four paralleled converter units 
is shown in Fig. 8. The Ud0 is the no-load voltage of 
the converter; RS4 is the internal resistance of the four 
paralleled converter units; Lp is the inductance of DC 
reactor; Ld is the inductance of DC circuit; Rd is the DC 
resistance; R1 is the resistance of the stainless steel resistor.

According to Fig. 8, the (1) can be obtained as:

(1)

The U2 is the secondary phase to phase voltage of the 
converter transformer. Then (1) can be equivalent to (2). 

(2)

The Id can be calculated:

(3)

(4)

Different transformer tap position corresponds to the 

Fig. 6.  The cubicle configuration of local controller.

Fig. 7.  The 120 kA steady state current profile (Idc is the dc terminal current).
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Operation Mode Parameter Value Ripple
Rated DC voltage 500 V - 

Single converter operating 
Rated DC current 30 kA 1% 
Rated DC voltage 500 V - 

Two converters in parallel 
Rated DC current 60 kA 1% 
Rated DC voltage 500 V - 
Rated DC current 120 kA 1% Four converters in parallel 

Short pulse current 500 kA - 
Rated DC voltage 1.0 kV - 

Two converters in series 
Rated DC current 30 kA - 
Rated DC voltage 2.0 kV - 

Four converters in series 
Rated DC current 30 kA - 

 

TABLE II
Operation Parameters of DC High-Power Test Facility
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different parameters. The internal resistance of the four 
paralleled converter units RS4, the total resistance RΣ, the (3) 
and (4) can be obtained as Table III.

The calculated output capability of the DC current in 
Table III is not the experiment current that the converter 
can withstand. The experiment peak current and its pulse 
width is limited by the thyristor limiting load integral 
parameter, the thyristor internal silicon temperature, and 
should be with some safety margins.

2) The 500 kA Output Capability Experiment
For the pulse current operation, the whole process of 

the pulse can be divided into three stages, rising process, 
inflection point and falling process as Fig. 9. All of these 
three stages current control is required very fast dynamic 
response within milliseconds.

During the rising process, the converters work in the 
converter model. Because of the AC and DC loop impedance 
difference between each paralleled converter, the control 
purpose is not the same DC average voltage but the same 
current for each paralleled converter. During inflection 
point, it is, in fact, in a transient process, the converters 
should be changed from converter model to inverter model. 
Because of the phase shifting between each converter 
transformer, the DC voltage transient values of each 
converter is different, the DC output transient current is 
hard to be controlled. And any current overshoot could lead 
the converter failure because of the huge transient current. 
While during the falling process, the converters work in 
the inverter model. Because of the inherent characteristics 
commutation failure of thyristor-based converter when in 
inverter model, this process should be controlled carefully 
according to each converter DC current. And in this phase, 
the current sharing control is a very important task to make 

sure the system safe.
As the key technology of DC high power test facility, the 

dynamic current sharing control strategy of 500 kA pulse 
current is shown as Fig. 10. 

The proportional control with the incremental control 
algorithm is adopted to ensure the dynamic characteristics 
and the system stability [14], [15]. Uref is the control 
reference voltage. The P controller parameters are designed 
carefully to ensure the short response time, and to avoid 
overshoot or shock in operation. Δu1, Δu2 and Δu3 are the 
incremental voltage. 

With the characteristics that short pulse time, large output 
current and fast current rising, the voltage open loop 
and current closed loop are adopted for the pulse output 
operation. One of the paralleled converter CU1 is selected 
as the master module, and the other ones (CU2 to CU4) 
are treated as the slave modules, each slave module will 
perform current sharing adjustment according to the current 
of the master module I-CU1. 

The experiment is carried out on DC high power test 
facility to verify the effectiveness and the feasibility of this 
control strategy. The 500 kA pulse peak current output is 
shown as Fig. 11. In pulse operation, the output peak current 
is 500 kA within 0.3 s, the profile is shown in Fig. 11. These 

Fig. 9.  The simulation of 500 kA peak pulse current output.

Fig. 11.  The 500 kA Peak Pulse Current Profile (I-CU1: CU1 converter current; 
I-CU2: CU2 converter current; I-CU3: CU3 converter current; I-CU4: CU4 
converter current; Idc is the dc terminal current).

115/80 487 0.48 0.88 59.7 721.7 

115/42 256 0.27 0.67 78.4 498.3 

115/12 73 0.20 0.60 87.5 158.7 

TABLE III
Output Capability of Four Paralleled Converter Units

Fig. 10.  Dynamic current sharing control strategy of 500 kA pulse current.  
(I-CU1: CU1 converter current; I-CU2: CU2 converter current; I-CU3: CU3 
converter current; I-CU4: CU4 converter current; Idc: the dc terminal current).

+

+

+

+

+

-

+

-

+

-
+

+

+
+

+

+

+

+

+

P CU2

P CU3

P CU4

I-CU2

I-CU3

I-CU4

CU1

I-CU1

Uref

u2

u3

u4

Time (s)

I-CU1
I-CU2
I-CU3
I-CU4
Idc

0.0

500

400

300

200
C

ur
re

nt
 (k

A
)

100

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7

X. CHEN et al.: SYSTEM REALIZATION OF CASHIPS DC HIGH POWER TEST FACILITY



106 CPSS TRANSACTIONS ON POWER ELECTRONICS AND APPLICATIONS, VOL. 4, NO. 2, JUNE 2019

performance could be used for DC high-power equipment 
type test. 

C. The Completed Test

Until now, 17 devices type test of 16 companies and manu-
facturers have been done, including AC/DC converter 
type test, bypass the type test, DC reactor type test, feeder 
type test, DC line disconnector type test, and traction 
distribution DC switchgear type test, etc. 

AC/DC converter is implemented the type test, in order 
to verify the converter structural strength in case of the 
converter reactor upstream short. The thyristors were all 
replaced by high power diodes in order to achieve the peak 
current without control. In this test, the converter bridge 
was subjected to 430 kA peak short current test. There is no 
deformation or damage to the structure, and the test results 
showed that the structural strength of the converter meets 
the design requirements. The test photo and the current 
profile is shown in Fig. 12.

DC line disconnector type test is realized in the pulse 
mode to verify mechanical stability and thermal stability 
under shock current conditions of 380 kA peak current. The 
DC line disconnector is not deformed or damaged, and the 
test results showed that the designed disconnector meets 

Fig. 12.  AC/DC converter type test. (a) Test photo. (b) Test profile (Idc is the dc 
terminal current).

Fig. 13.  DC Line Disconnector type test.  (a) Test photo. (b) Test profile (Idc is 
the dc terminal current).
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the design requirements. The test photo and the current 
profile is shown in Fig. 13.

DC busbar type test is realized in the steady state current 
mode to verify the thermal stability. The steady state current 
is 27.5 kA, the test continues until the bus temperature 
reaches equilibrium. The test results showed that design 
of the DC busbar meets the design requirements. The test 
photo and the current profile is shown in Fig. 14.

V. Conclusion

The DC high-power test facility is designed and constructed 
by ASIPP which aims to perform the test of ITER PF AC/
DC converter system and meets the future continuous 
upgrading needs of the modern industrial power system 
and scientific research. Certified by CNAS in May 2017, 
15 test reports are accepted by 35 countries in the world. 
The steady-state current of DC high-power test facility is 
rated at 120 kA. The pulse peak current is 500 kA. The 
DC high-power test facility is developed into a high-power 
electrical professional test facility, which is capable of the 
type test and routine test of the components in industry, rail 
traffic and electric power. In this paper, the topology and 
the control of the DC high-power test facility are presented. 
Then the performance results from the experiments of 
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its testing capability are reported. The experiment results 
illustrated that the testing capability that 120 kA steady-
state continuous current and 500 kA pulse current of DC 
high-power test facility is qualified. 
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Fig. 14.  DC Busbar type test.  (a) Test photo. (b) Test profile (Id is the dc busbar 
current).
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A Modified Aalborg Inverter Extracting
Maximum Power From One PV Array Source

Houqing Wang, Weimin Wu, Shuai Zhang, Yuanbin He, Henry Shu-Hung Chung, and Frede Blaabjerg

Abstract—Distributed Photovoltaic Generation (DPVG) systems 
have become more important in recent years because of energy 
pinch and air pollution. Grid-tied inverters, as the indispensable 
parts of the DPVG systems, have drawn a lot of research 
attentions. Among various constructors, the Aalborg inverter was 
proposed as a candidate for the interface between the PV arrays 
and the power grid for some potential advantages, such as the 
wide range of input DC voltages, high efficiency, low cost and no 
leakage current. For a conventional Aalborg inverter, however, 
in order to gain a symmetrical gird-injected current, when the 
input DC voltages generated by the PV arrays are not equal, part 
of the input DC energy has to be discarded, which will reduce the 
conversion efficiency of the whole system. In this paper, a modified 
Aalborg inverter with a single input DC source is proposed to 
extract the maximum DC energy of PV arrays. The operating 
principle is illustrated via equivalent circuits. The control strategy 
is designed to balance the capacitor voltages and smooth the grid-
injected current. A 110 V/50 Hz/800 W prototype has been built 
to verify the validity of the proposed inverter together with the 
effectiveness of the control strategy.

Index Terms—Aalborg inverter, Buck-Boost, maximum power 
piont tracking (MPPT), photovoltaic system, voltage balance.  

I. Introduction

WITH the development of global economy and the increase 
of  population,  environmental  pollution  and  energy 

shortage  are  becoming  increasingly  serious.  Distributed 
Photovoltaic Generation (DPVG), as one of the most important 
renewable energy resources, has experienced dramatic growth 
worldwide due to its environmental friendliness [1]–[3]. The 
grid-tied inverters, connecting the power grid with PV arrays, 
play  an  integral  role  in  DPVG  systems  and  have  been 
investigated [4]–[6]. Owning to the advantages of low cost, 
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high efficiency and small size, transformerless inverters using 
MOSFET switches are regarded as one of the most promising 
topologies [7]–[9].

Recently, a grid-tied inverter called Aalborg inverter has been 
proposed in [5], where it is a new family of high efficiency 
MOSFET-switch-based half-bridge type inverter with a wide 
variation of input DC voltage. Similar to the conventional 
dual mode time-sharing inverters [10], [11], since only one 
power stage chops at high frequency at any time, the minimum 
switching power losses and high efficiency of the Aalborg 
inverter can be realized. Meanwhile, a low drop voltage across 
the filtering inductors in power loop can further reduce the 
power losses [12]. So this type of inverter is suitable for the 
connection between power grids and PV arrays. However, in 
order to ensure the grid-injected current amplitude value is equal 
during both positive and negative half line cycles, the maximum 
energy would not be extracted when the input DC voltages are 
unbalanced, which will result in sacrificing the whole conversion 
efficiency of  the DPVG systems.

In real PV applications, the output energy of each independent 
PV array is influenced by many factors, such as the shape of PV 
panels, the air humidity [13], the incidence angle [14] and the 
irradiation temperature [15]. In this scenario, output DC voltages 
of the two independent PV sources are not always equal. 
Consequently, input DC energy from the PV modules cannot be 
fully utilized for the conventional Aalborg inverter if no other 
measures are taken. Thus, it is significant to make full use of 
each input source energy and improve the efficiency of Aalborg 
inverter, when the output DC voltages of independent PV arrays 
are unequal.

To fully utilize the DC power generated by the PV arrays, 
a PV string boost stage is generally applied to the interface 
between the inverters and PV arrays [4], [16]–[18]. The boost 
circuit could improve the lower input DC voltage and enable 
both input DC voltages to be the same for conventional 
Aalborg inverter, but the auxiliary hardware circuit needs 
extra devices which leads to a two-stage architecture which 
inevitably increases the cost and the complexity of the whole 
system. Based on the operating principle of the coupled 
inductor, [19] presented a coupled-inductor-based inverter 
which can regulate the input energy and enable the maximum 
energy of each PV array to be extracted. The merit of this 
method is that a magnetic core can be saved and a smaller 
size and lower cost can be attained [19], [20]. Nevertheless, 
the leakage inductor of the coupled inductor is required to be 
very small so that it can be ignored, which will increase the 
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difficulty of the manufacturing process. On the other hand, in 
terms of software, some methods, like the space vector PWM 
(SVPWM) [21]–[23], and the predictive control strategy 
[24], [25], are applied to solve the imbalance issue of DC 
link capacitor voltage in multilevel multiphase converters, 
but not applicable to the conventional single-phase Aalborg 
inverter presented in [5]. This paper presents a modified 
Aalborg inverter with a single input DC source. Compared 
with the conventional Aalborg inverter, the main difference 
in configuration is that the two PV-array sources are replaced 
with one PV-array source and the mid-line connected ground 
is dismissed in the proposed inverter. The voltage balance 
controller is employed in the outer voltage control loop to 
balance the voltages of electrolytic capacitors.

The rest of this paper is organized as follows. The 
conventional Aalborg inverter and its principle of operation 
are first briefly introduced in Section II. Then, the modified 
Aalborg inverter is presented and analyzed through the 
equivalent circuits in different working states in Section III. The 
leakage current of the proposed inverter is analyzed in Section 
IV. Continuously, in Section V, the whole control strategy is 
designed to balance the capacitor voltages and get a sinusoidal 
grid-injected current. The criteria to select the values of passive 
element are presented in Section VI. Next, an experimental 
setup is built in Section VII, to verify the validity of the 
operating principle and the effectiveness of the control strategy. 
Finally, conclusions are drawn in Section VIII.

II. Conventional Aalborg Inverter

Fig. 1 shows the conventional Aalborg inverter with two 
separate input DC sources. The red devices work during the 
positive period of grid voltage. The blue devices work during the 
negative period of grid voltage. As shown in Fig. 2, according to 
the amplitude relation between the grid voltage (Vg) and the input 
DC voltage (VPV1, VPV2), the Aalborg inverter can operate in pure 
“Buck” mode and “Buck-Boost” mode. When the amplitude 
value of the grid voltage is lower than the DC voltage, it operates 
in “Buck” state. Otherwise, it operates in “Boost” state. Therefore, 
it can regulate the output voltage by changing its working states 
and is suitable for a wide range of input DC voltage. Furthermore, 
MOSFET devices are adopted, the inductor voltage drop in the 
power loop is minimized and only one switch is chopping at high 

Fig. 1.  Conventional Aalborg inverter with two separate input DC sources.

Fig. 2.  Operating modes of the Aalborg inverter: (a) Pure “Buck” mode, |Vg| is 
lower than VPV1 and VPV2, (b) “Buck-Boost” mode, |Vg| is higher than VPV1 and VPV2.

Fig. 3.  The modified Aalborg inverter with a single input DC source.

frequency at any time. Thus, high efficiency can be achieved. 
Besides, no leakage current exists.

However, due to the overshadowed solar panels, installation 
angle or some other factors in the photovoltaic system [13]–
[15], it is very hard for two different PV arrays to generate and 
output equal DC energy. In order to get a symmetrical grid-
injected current, differential DC energy of the two PV arrays 
has to be lost [4]. Therefore, some extra measures should be 
taken to fully utilize the output energy of the independent PV 
array sources.

III. Proposed Single-Input-DC-Source Aalborg 
Inverter and Its Operation

A single-input-DC-source Aalborg inverter is proposed and 
shown in Fig. 3. The modified Aalborg inverter inherits the 
advantages of the conventional Aalborg inverter, such as high 
efficiency, no leakage current and wide range of input DC 
voltage. The main difference is that the PV array1 source and 
array2 source are replaced with one PV array source, and the 
mid-line connected ground is dismissed. The PV array source 
first supplies power to the electrolytic capacitors (C1, C2), then 
the electrolytic capacitors will supply the energy to the grid 
side respectively during the positive and negative period of line 
frequency. The modified Aalborg inverter can fully extract the 
energy of the PV array.

Similar to the conventional Aalborg inverter, working states 
of the proposed inverter are also dependent on the amplitude 
relation between input DC voltage and grid voltage. When 
VPV/2 ≥ |Vg|, the proposed inverter operates in “Buck” state. 
While when VPV/2 < |Vg|, the proposed inverter operates in 
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Fig. 4.  Equivalent circuits during “Buck” stage in the positive period of line 
frequency: (a) Energy storing and (b) energy releasing.

Fig. 5.  Equivalent circuits during “Buck” stage in the negative period of line 
frequency: (a) Energy storing and (b) energy releasing.

Fig. 6.  Equivalent circuits during “Boost” stage in the positive period of line 
frequency: (a) Energy storing and (b) energy releasing.

“Boost” state. The operating principle of the proposed single-
input-DC-source Aalborg inverter will be illustrated through the 
equivalent circuits.

When the proposed inverter works in “Buck” state, the 
equivalent circuits are shown in Fig. 4 and Fig. 5. During the 
positive period of line frequency, S3 is on, S1 works in high 
frequency and the rest of the switches are off. Fig. 4(a) shows 
that when S1 is on, capacitor C1 supplies the energy to L1 and 
the grid. When S1 is off, as shown in Fig. 4(b), the energy stored 
in L1 will be released to the grid. During the negative period 
of line frequency, S6 is on, S4 works in high frequency and the 
rest of the switches are off. Fig. 5(a) shows that when S4 is 
on, capacitor C2 supplies the energy to L2 and the grid. When 
S4 is off, as shown in Fig. 5(b), the energy stored in L2 will be 
released to the grid.		

Fig. 6 and Fig. 7 show the equivalent circuits when the 
proposed inverter works in “Boost” state. During the positive 
period of line frequency, S1 and S3 are on, S2 works in high 
frequency and the rest of the switches are off. When S2 is on, 
capacitor C1 supplies the energy to L1. When S1 is off, capacitor 
C1 and L1 provide energy for the grid. During the negative period 
of line frequency, S4 and S6 are on, S5 works in high frequency 
and the rest of the switches are off. When S5 is on, capacitor C2 
supplies the energy to L2. When S5 is off, capacitor C2 and L2 
provide energy for the grid.

It should be noted that the PV array supplies the energy to 
both capacitor C1 and capacitor C2.
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by switching frequency. If the capacitance of C1 and C2 are equal 
and the capacitance value is large enough, the common mode 
voltage can be derived as

(2)

Thus, the leakage current caused by the switch operation is 
almost equal to zero.

V. System Control Strategy

In real applications, some factors, such as the difference 
of device parameters, the error of sensor and the asymmetric 
impedance of circuits [19], may cause the electrolytic capacitor 
voltages to be unbalanced, which distorts the injected current, 
worsens the circuit performance or even makes the system out 
of control. In order to balance the electrolytic capacitor voltages, 
a voltage balance controller (VBC) is employed in this paper. 
Fig. 9 depicts the outer voltage loop control diagram. The 
electrolytic capacitor voltages (VC1

, VC2
) are measured, and the 

difference between VC1
 and VC2

 will be regarded as the input of 
the VBC, the output of the VBC and the output of Voltage_PI 
are superimposed as the grid-injected reference current Iref. VBC 
is a traditional PI controller. It should be pointed out that the 
difference of average capacitor voltages is much smaller than the 
value calculated by PV Maximum Power Point Tracking (MPPT).

Assuming that the electrolytic capacitors (C1 and C2) are large 
enough so that the voltage disturbance coming from the PV 
arrays can be ignored, and the AC source can be regarded as an 
ideal source. The small signal model of the modified Aalborg 
inverter is the same as the conventional Aalborg inverter [5].

Fig. 10 describes the internal current loop control diagram of 
the modified Aalborg inverter, where the input signals include 
the grid voltage (Vg(t)), the capacitor voltages (VC1

(t), VC2
(t)) 

and the feedback current of DC inductors (iL1
, iL2

). When the 
capacitor voltage is higher than the amplitude value of grid 

Fig. 7.  Equivalent circuits during “Boost” stage in the negative period of line 
frequency: (a) Energy storing and (b) energy releasing.

IV.  Leakage Current Analysis of the Modified 
Inverter

As shown in Fig. 1, since one terminal of the PV panel is 
connected to the earth, there is no leakage current in the con-
ventional Aalborg  inverter. Fig. 8 shows the proposed inverter 
with parasitic capacitor. The leakage current can be derived as

(1)

Similar  to  the  half  bridge  topology, the common mode 
voltage  (vcm1 or vcm2) across the parasitic capacitor is not affected 

Fig. 8.  The structure of the proposed topology with parasitic capacitor.

v
cm C cm

Fig. 9.  The outer voltage loop control diagram.

Fig. 10.  The internal current loop control diagram.

v v   1cmcm   2 PV
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(9)

where VCX
 is the average value of C1 or C2, ΔVCX

 is the voltage 
ripple of C1 or C2. The capacitance value of C1 or C2  can be 
attained from (8) and (9).

(10)

where η is the efficiency of the whole system. It can be seen 
that the minimum value of capacitor CX is determined by the 
maximum value of voltage ripple.		

Suppose PO_max = 800 W, η = 98%, for a maximum ripple of 
5%, and substitute other corresponding parameters into (10), the 
minimum value of C1 or C2 can be obtained when the inverter 
works in “Buck-Boost” mode (VC1 = VC2 = 100 V).

C1 = C2 = 2598 μF                                (11)

Considering some factors, such as power losses, capacitor 
aging and steady-state characteristics of the system, the DC bus 
capacitor [31] is finally selected as C1 = C2 = 4000 μF.

B.  The Selection of L1, L2, L3, and C3		

In this paper, inductors L1 and L2 work in continuous 
conduction mode. The design principle of L1, L2 and C3 given 
in [32] is followed. When the inverter operates in pure “Buck” 
mode, values of L1 and L2 are obtained from the expression 
given in [32]

(12)

Typical values of ΔiLX
 (X = 1, 2) lie in the range of 10% to 

20% of the full-load [32]. In this paper PO_max = 800 W, Vg = 110 V, 
TS = 1/40 k, and suppose the current ripple ΔiLX

 is 	

(13)

By combining (12) and (13), when the inverter works in pure 
“Buck” mode and D = 0.5, the minimum DC inductor (L1 or L2) 
can be calculated as

L1 = L2 ≈ 0.631 mH                            (14)

Considering that the inductance value decreases with the 
increase of current, L1 = L2 = 0.8 mH is chosen in this paper. In 
order to achieve wide stability margin and large control band 
width, a value which is not larger than L1 or L2 is selected for L3 [33].

Likewise, when the proposed inverter works in “Boost” state, 

voltage, the modified Aalborg inverter operates in “Buck” state 
and it is a classical voltage source inverter with LCL filter, which 
has been analyzed in [26]–[30]. The reference current of “Buck” 
can be derived as

(3)

When the modified Aalborg inverter works in “Boost” state, 
an indirect current control method is adopted since character 
frequency of the filter is much higher than the control bandwidth 
[5]. Based on the instantaneous input power equals the 
instantaneous output power, which can be described as,

(4)

the reference current of “Boost” can be derived as,

(5)

VI. Parameter Selection of C1, C2, C3, and L1, L2, L3

A.  The Selection of C1 and C2

Similar to the conventional half-bridge type converter, 
by proper design, the voltage fluctuation could be limited to 
values which would not affect the MPPT.

The output power PO can be obtained by the instantaneous 
voltage and the current of the output power grid.

(6)

where Vgm is the peak value of the grid voltage, Igm is the 
peak value of the grid-side current, ω = 2 ·π · f,  f is the grid 
frequency. It can be seen that the output power PO consists of 
DC component (Pdc) and AC component ( ac (t) ).	

Since the input of the inverters is DC power and the output 
is AC power, according to the conservation of energy, there 
is power fluctuation on the DC bus. The instantaneous power 
difference can be obtained by using (6).	

(7)

When ac (t) > 0, the capacitor release the energy, which can be 
derived as

(8)

At the same time, the change of capacitance energy can be 
obtained according to the change of DC bus voltage.

  X LX
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the value of C3 can also be obtained from the expression derived 
in [32]

					   
(15)

						    

wherein, Rf is the equivalent resistor for calculating the 
generated power. Suppose the voltage ripple Δv is

       (16)

Based on (15) and (16), when the inverter works in pure 
“Boost” mode and D = 0.3548, the minimum capacitor (C3) can 
be calculated as

C3 ≈ 1.955 μF,                                 (17)

C3 = 2 μF is chosen in this paper.

VII. Experiments

As shown in Fig. 11, a 110 V/50 Hz/800 W prototype 
has been constructed to verify previous analysis. The 
parameters of the system are listed in Table I. A DSP controller 
(TMS320LF28335) is adopted to complete all the control tasks. 
A solar array power supply (Chrome 62150H-600s) is provided 

vf

g

Δ SD ,

Table I
Parameters for Experiments

Parameter Value 

DC inductor L1, L2 0.8 mH 

Electrolytic capacitor C1, C2 4000 μF 

Filter inductor L3 0.8 mH 

Filter capacitor C3 2 μF 

Grid voltage Vg 110 V 

Grid frequency fo 50 Hz 

Switching frequency fsw 40 kHz 

Input DC voltage VPV 200 V/400 V 

Proposed Inverter

L1

Fig. 11.  Experimental prototype developed for the proposed inverter.

to imitate the PV array, and the grid voltage is emulated by 
using a programmable AC Source of Chroma 6530. The 
experimental results are displayed in Figs. 11–14, respectively.

Figs. 12–14 show the experimental results when VPV = 400 V, 
Vg = 110 V, the proposed inverter operates in pure  “Buck” 
mode. Fig. 12 depicts the measured electrolytic capacitor 
voltages of VC1

(t) and VC2
(t), the grid voltage of Vg (t) and the 

grid-injected current of ig (t). From Fig. 12, it can be seen that 
the grid-injected current is in a good sinusoidal shape and the 
electrolytic capacitor voltages are almost balanced through the 
control of VBC (VC1

 = 198.68 V, VC2
 = 200.45 V). Moreover, the 

electrolytic capacitor ripple voltage is very small and the ripple 
voltage is about 4 V. The power factor (PF) and the THDs of the 
grid-injected current and voltage are measured in Fig. 13. The 
PF is almost one unit (0.9974) and the THD of the grid-injected 
current is only 1.86%. Fig. 14 shows that the proposed inverter 
has a very high MPPT’s efficiency, which is around 99.20%.

When VPV = 200 V, Vg = 110 V, the proposed inverter operates 
in “Buck-Boost” mode and the experimental results are shown 
in Figs. 15–17. Fig. 15 shows the capacitor voltages of VC1 

(t) 
and VC2 

(t), the grid voltage of Vg (t) and the injected current of 

ig [ 5.0 A/div ]

VC1
 [ 50 V/div ] Vg [ 50 V/div ]

VC2  [ 50 V/div ]

Zero

2ΔVC1 
= 8 V

(a) 

iL1
 [ 5.0 A/div ]

iL2
 [ 5.0 A/div ]

Zero

Zero

(b) 

2ΔVC2 = 8 V

Fig. 12.  Experimental waveforms in pure “Buck” mode, when VPV = 400 V, 
Vg = 110 V and PO = 770 W. (a) Measured capacitor voltages (VC1

, VC2
), grid-

injected current (ig (t)), grid voltage (Vg(t)). (b) Measured DC inductor currents 
(iL1

, iL2
).

Δv    15%·v
g
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ig (t). It can be seen that grid-injected current also has a pretty 
sinusoidal waveform except for a little distortion resulted from the 
Buck-Boost switching point. The electrolytic capacitor voltages 
are kept balanced (VC1

 = 101.3 V, VC2
 = 101.2 V) and the average 

voltage of each capacitor is equal to half of the PV array output 

 

 
(a) 

 
(b) 

Fig. 13.  The measured results in pure “Buck” mode, when VPV = 400 V, Vg = 110 V 
and PO = 760 W. (a) The power factor of the system. (b) The THD values of 
output voltage and current.

Fig. 14.  MPPT results in pure “Buck” mode, when VPV = 400 V, Vg = 110 V and 
PO = 770 W.

ig [ 5.0 A/div ]

VC1  [ 50 V/div ] Vg [ 50 V/div ]

VC2  [ 50 V/div ]

Zero

 
(a) 

iL1  [ 5.0 A/div ]

iL2  [ 5.0 A/div ]

Zero

Zero

 
(b) 

2ΔVC1 = 10 V

2ΔVC2 = 10 V

Fig. 15.  Experimental waveforms in “Buck-Boost” mode, when VPV = 200 V, 
Vg = 110 V and PO = 770 W. (a) Measured capacitor voltages (VC1

, VC2
), grid-

injected current (ig (t)), grid voltage (Vg (t)). (b) Measured DC inductor currents 
(iL1

, iL2
).

(a) 

(b) 

Fig. 16.  Measured results in “Buck-Boost” mode, when VPV = 200 V, Vg = 110 V 
and PO = 750 W. (a) The power factor of the system.
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voltage, which means the proposed control method can realize 
the capacitor voltage balance of the modified Aalborg inverter. 
At the same time, compared with the electrolytic capacitor 
voltages, value of the voltage ripple is about 5 V, which is 
consistent with previous analysis. Fig. 16 shows that the PF is 
equal to 0.9978 and the THD of the output current and voltage 
are slightly larger than that in pure “Buck” mode, because of 
the Buck-Boost switching point. MPPT’s results are shown in 
Fig. 17, it can be seen that the MPPT’s efficiency, about 99.49 %, 
is also very high.

VIII. Conclusion

This paper presents a modified Aalborg inverter with a 
single input DC source to maximize power yield from the PV 
array. The characteristics of this inverter can be summarized as 
follows.

1) Similar to the conventional Aalborg inverter proposed in 
[5], the inductor voltage drop in power loop is minimized, 
MOSFET switches are adopted and only one switch 
operates at high frequency at any time, which ensures that 
the proposed inverter has a high efficiency. Besides, the 
input DC voltage can vary widely and no leakage current exists.

Fig. 16.  (Continued..) The measured results in “Buck-Boost” mode, when 
VPV = 200 V, Vg = 110 V and PO = 750 W. (b) The THD values of output voltage 
and current.

(a) 

(b) 

Fig. 17.  MPPT results in “Buck-Boost” mode, when VPV = 200 V, Vg = 110 V 
and PO  = 770 W.

2) Different from the conventional Aalborg inverter proposed 
in [5], the modified Aalborg inverter only requires one PV 
array source, rather than two. The mid-line connected ground 
is dismissed. The PV array source first supplies power to the 
electrolytic capacitors (C1, C2), then the electrolytic capacitors 
will supply the energy to the grid side respectively during 
positive and negative period of line frequency. The modified 
Aalborg inverter can fully extracted the energy of the PV array.

The operating principle of the proposed inverter has been 
illustrated through the equivalent circuits. The whole control 
strategy is designed to balance the capacitor voltages and obtain 
a sinusoidal grid-injected current. Experimental results based on 
an 110 V/50 Hz/800 W prototype have verified the feasibility of 
theoretical analysis and the effectiveness of the control strategy.
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Control Strategy to Start a Shaft Generator System 
Employing DFIM Under Power Take Me Home Mode

Tong Zhao, Dawei Xiang, and Yan Zheng

Abstract—Comparing to the traditional synchronous or induction 
electric machines, the doubly-fed induction machine (DFIM) with 
the partially rated converter is a good solution for a shaft generator 
system which normally operates within a relatively small adjustable 
speed range. However, the application of DFIM is limited in the real 
systems due to the lack of self-start capability under the power take 
me home (PTH) mode when the main engine fails. To overcome 
this problem, an approach is proposed in this paper. The basic idea 
is first to start the machine in the induction machine (IM) mode 
feeding from the ship-borne power grid (SPG) and then to switch 
over into the DFIM mode when the speed reaches its normal speed 
range. The hardware scheme, start procedure and control algorithm 
of the start approach are presented in the paper. Simulation and 
experimental studies were carried out to validate the feasibility and 
effectiveness of the approach.

Index Terms—doubly-fed induction machine (DFIM), power take 
me home (PTH), shaft generator system.

I. Introduction

OWING to the increasing pressure on global environ-
mental and energy resources, there is a technical trend 

to continuously reduce fossil fuel consumption and the CO2 

emission for ships [1]−[3]. Moreover, the global economic 
crisis makes managers more sensitive about the cost of 
international sea transportation [4]−[8]. As a result, more and 
more attention has recently been paid to the shaft generation 
(SHG) technology.

In an SHG system as shown Fig. 1, a shaft machine is 
connected with the main engine (mostly a diesel engine) by 
clutches and gear box, which can operate as a generator or 
a motor. It helps the conventional ship propulsion system to 
improve not only the energy efficiency but also the system 
reliability. When the main engine (ME) fails, the shaft 
machine can drive the whole ship independently at a lower 
speed in order to return to a port, which is called as the 
power take me home (PTH) mode.

According to the rating of the power converter, the SHG 
systems could be divided into two types, i.e., the full-
power shaft generator (FPSG) system and doubly-fed 
shaft generator (DFSG) system. The FPSG system has 
a wide speed range which can be easily started to drive 
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the ship without ME in PTH mode. However, a larger 
capacity of the converter is demanded in the FPSG system, 
which increases the cost and volume of the system in the 
limited room on board [9]−[10]. DFSG system has less 
cost and smaller volume because of the smaller capacity of 
the converter. Unfortunately, its speed range is relatively 
small, which cannot be directly started from a standstill and 
operated in PTH mode [11]−[15].

To overcome the self-start difficulty of DFSG system, an 
approach is proposed in this paper. The basic idea is first 
to start the machine in the induction machine (IM) mode 
feeding from the ship-borne power grid (SPG) and then to 
switch over into the DFIM mode when the speed reaches its 
normal speed range. Simulation is carried out to verify the 
feasibility and effectiveness of this approach. To clarify the 
method, the remaining paper is organized as follows. Firstly, 
the principle of this approach is described in Section II 
including the hardware scheme, start process and control 
algorithm. Then, a typical 500 kW DFSG system is studied 
using MATLAB/Simulink in Section III to prove the 
method. After that, an experimental platform is built and 

Fig. 1.  Structures of SHG system. (a) Doubly-fed shaft generator system. 
(b) Full-power shaft generator system.
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experimental results show the practical application effect of 
this method in Section IV. Finally, the conclusion is made 
in Section V to highlight the advantages of the method.

II. DFIM Shaft Generator System Start Approach 
Under PTH Mode

A.  Principle

The method proposed in this paper aims at starting the 
DFIM from a standstill under PTH mode, which can hardly 
be realized in a conventional DFIM system. The key of this 
approach is to modify the DFIM into an induction machine 
to start it from a standstill. Specifically, the machine is firstly 
converted into an IM by shorting the three-phase rotor 
windings. Then, the machine can be started as an IM until its 
speed reaches the DFIM speed range. After that, the three-
phase rotor windings will be opened to allow the machine 
operating in the DFIM mode to drive the ship independently 
under PTH mode.

This method switches the machine operating between the 
IM and DFIM modes. By combining the advantages of IM 
(self-start) and DFIM (partial-rated converter) together, it can 
effectively improve the technical and economic performance 
of SHG technology.

B.  Hardware Scheme

Comparing with the conventional solution, a crowbar with 
Ks2 and resistors (for rotor current limitation) are added in 
the improved DFSG system (see in Fig. 2), which enables 
the machine to switch between DFIM and IM modes. When 
Ks2 is closed, the rotor windings are short-circuited and the 
machine works like an IM. Ks2 cannot be opened until the 
speed exceeds the minimum speed of DFIM mode.

As shown in Fig. 2, the ship-borne power grid (SPG) is 
powered by several diesel generators (DG). The improved 
DFSG system has two switches, Ks1 and Ks2. Ks1 connects the 

stator to the SPG directly. Ks2 connects with the three-phase 
rotor windings. Meanwhile, the rotor is also connected with 
a variable-speed constant-frequency (VSCF) equipment, 
which consists of a back-to-back grid side converter (GSC) 
and rotor side converter (RSC). There is a controller inside 
the VSCF equipment that controls RSC and GSC by PWM 
signals.

Two clutches are connected between the gearbox and the 
shaft machine and ME respectively, by which the propulsion 
power can be independently transmitted to the propeller to 
drive the ship.

C.  Start Procedure 

1) Process
The flow chart of the start process is shown in Fig. 3. Firstly, 

the VSCF equipment is disabled by blocking the PWM 
signals. Secondly, both the ME and DFIM are disconnected 
by clutches. Then, Ks2 will be closed and the machine works 
in IM mode. After that, the machine is started by closing Ks1 
feeding from the SPG. Then the machine will be connected 
to the gear box and propeller by closing the clutch 1 at a low 
speed (e.g., 150 rpm).

Fig. 2. Structure of the improved DFSG system.

Fig. 3. Flow chart of start process of DFSG system under PTH mode.
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After the speed increases gradually and exceeds the 
minimum speed of DFIM, the machine is ready to switch 
over into the DFIM mode. Then, Ks1 and Ks2 will be opened 
to disconnect the SPG and shorting the rotor windings. Due 
to the large inertia, the machine speed will be maintained for 
a while, during which the stator voltage can be established 
and stabilized. Finally, Ks1 is closed and the machine controlled 
by the VSCF equipment is connected to the SPG. At this 
time, the start process is finished and the ship can be driven 
by the DFIM under PTH mode. Note that, the step S6 could 
be simplified by only open Ks2 with Ks1 remaining closed, 
but Ks2 must be switched at current zero crossing point to 
avoid switching over-voltage.

2) Mode Switching
As the key step in the whole start process, the mode switching 

process between IM and DFIM modes (S6 in Fig. 3) can be 
divided into 2 sub-steps as follows:

Sub-Step 1: Field Energy Dissipation
Ks1 is opened and Ks2 is kept closed until the stator voltage 

reduces to an acceptable level. During this sub-step, the 
electromagnetic field energy in the shaft machine is mainly 
dissipated by the crowbar resistor.

Sub-Step 2: Re-Excitation
After field energy dissipation, open Ks2 and re-excite the 

machine by the VSCF equipment to establish a stable 
stator voltage identical to voltage of SPG ready for grid 
integration.

D.  Control Algorithms

During the start process, the machine operates in two 
modes depending on whether the rotor windings are close 
or open. While the speed is less than the minimum DFIM 
speed, the rotor windings are shorted by Ks2. The machine is 
fed from the SPG by closing Ks1 and started directly in IM 
mode. As the machine’s speed increases, Ks1 and Ks2 will not 
be opened until the machine enters into the DFIM normal 
speed range. And then, the machine is converted to DFIM 
mode by switching Ks1 and Ks2 properly.

In IM mode, the shaft machine is directly started by the 
SPG. Some electromechanical impact (over-current and 
electromagnetic torque oscillation) will occur, due to the 
low power factor at low speed and the effect of transient DC 
stator flux. However, since the transient is short (typically 
several seconds), it is considered that the impact is tolerable 
for the system.

In DFIM mode, the machine is controlled by the VSCF 
equipment using the grid voltage oriented control algorithm 
(GVOC) [16]−[17]. The structure of GVOC is shown in Fig. 4. 
The active and reactive powers are decoupled through Park 
transformation and controlled by ird_ref and irq_ref respectively.

θg is the angle of Park transformation obtained from the 
phase locked loop (PLL) as shown in Fig. 5. Usq and U*

sq are 

used to calculate ωerror, which is added to ωN to estimate ω*. 
Then, ω* is integrated to obtain θg. The detailed description 
of PLL can be found in [18].

The control algorithm proposed above allows the machine 
to start from the standstill and propel the ship under PTH 
mode. By overcoming the difficulty of DFIM self-start, the 
method will facilitate the application of DFIM in the SHG 
systems.

E.  Capacity Matching Relationship in DFSG System

As shown in Fig. 2, a DFSG system is mainly composed 
of DFIM, VSFC, SPG, propeller and ME. To ensure a 
reliable PTH start, their capacities must be well matched. 
Theoretically, the capacity matching relationship is decided 
by the torque-speed characteristics of DFSG system as show 
in Fig. 6, where the critical constrain is that the rated torque 

Fig. 4. Block diagram of GVOC control algorithm for DFIM.

Fig. 5. Block diagram of PLL.

Fig. 6. The torque-speed characteristics of DFSG system with PTH capability.

Torque

 

Propeller characteristic: TL=Kt·ω
2
r

(refer to DFIM side)

Connect to SPG 

DFIM mode
（Ks2 open）

IM mode
（Ks2 close）

Clutch engagment

Rated torque of DFIM Ten

Speed ω r

 ω r_DFIM(min)
 ω r_DFIM(max)

Rated torque of propeller TLn

 

T. ZHAO et al.: CONTROL STRATEGY TO START A SHAFT GENERATOR SYSTEM EMPLOYING DFIM



122 CPSS TRANSACTIONS ON POWER ELECTRONICS AND APPLICATIONS, VOL. 4, NO. 2, JUNE 2019

of DFIM Te(n) must be greater than the propeller torque 
(refer to DFIM side) at the minimum speed of DFIM mode 
ωr_DFIM(min) to ensure the system can be started in PTH mode. 
Consequently, the capacity matching relationship between 
different units could be derived in the equations as below.

(1)

PVSFC = smax PDFIM                                                       (2)

PDE = (l + smax) PDFIM + PPP                                        (3)

PSPG > PDFIM                                                           (4)

Where, Te(n) and TL are the torques of DFIM and propeller 
(refer to DFIM side) respectively; ωr_DFIM(min), ωr_DFIM(max), smax 
are the minimum speed, maximum speed and maximum slip 
ratio of DFIM; PDFIM, PVSFC, PPP , PDE, PSPG are the nominal 
power ratings of DFIM, VSFC, propeller, the main engine 
and ship-borne power grid. It is noted that the equations 
above are the theoretical critical limitations. In a real system, 
some design margins must be given for system safety and 
reliability.

It can be seen in (1) and (2) that a larger speed operation 
range is preferred for a less power rating of DFIM with PTH 
capability but at the cost of higher power rating of VSFC. 
The tread-off between the capacities of DFIM and VSFC 
must be carefully considered at the stage of design, which 
affects the overall economic and technical performance of 
the system.

III. Simulation Study

A.  Simulation Model

In order to verify the feasibility and effectiveness of the 
proposed method, a 500 kW DFSG system was designed and 
simulated using MATLAB/Simulink as shown in Fig. 7. 
The parameters of the simulation system and DFIM are 
listed in Table I and Table II respectively. Note that, the 
rated values are used as the basic values of per unit (p.u.) 
in this paper.

The torque-speed characteristics of the shaft machine and 
propeller are plotted in Fig. 8. It is shown that the propeller 
can be driven by the shaft machine operating in IM mode 
at low speed. When rotor speed ωr reaches the minimum 
speed of DFIM (700 rpm), the operation mode will be 
changed from IM to DFIM by switching Ks1 and Ks2. Then, 
the machine is connected into the SPG so that the ship can 
be driven in DFIM mode while its speed is between 700 rpm 
and 800 rpm. During the start process, the propeller prefers 
to connect into the shaft machine by clutch 1 at a relatively 
low speed for safety reason.

Fig. 7. Simulation model of the improved DFSG system.

Fig. 8.  The torque-speed characteristics of the improved DFSG system.

Te(n) > TL@ωr_DFIM(min)       PDFIM >                     = PPP (1 ＋ smax )
3

(1 － smax )
2

 WM 51.2 rewop EM detaR
Rated propeller power 
Rated propeller speed 
Rated DC bus voltage 700 V 
Rated RSC capacity 160 kVA 
Switching frequency 3 kHz 
Gearbox speed ratio 1:6 
Clutch engagement speed 
Crowbar resistor 0.2 Ω 
Inertia time constant of drive train 

 

1.5 MW 
216.7 rpm 

150 rpm 

5.5 s 

TABLE I
Parameters of Simulation DFSG System

TABLE II
Parameters of DFIM

TL=Kt·ω
2
r

 Wk 005 rewop detaR
Rated stator line-to-line voltage 400 V 
Rated frequency of stator 50 Hz 
Open circuit voltage of rotor 

 3 sriap eloP
 mpr 0031 deeps detaR

Normal speed range 

1150 V 

700~1300 rpm 
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B.  Simulation Results

1) Results of the Start Process
Simulation has been carried out to study the performance 

of the proposed DFSG start approach under PTH mode. The 
simulation results are as summarized in Figs. 9-16.

The speed of shaft machine during the start process is 
plotted in Fig. 9. Firstly, the shaft machine starts under no-
load condition by closing Ks1 and Ks2 in IM mode. Secondly, 
the propeller is connected into the machine by clutch 1 at 
a low speed (150 rpm). While its speed enters the normal 
DFIM speed region (> 700 rpm), the machine is then 
switched into DFIM mode by opening Ks1, Ks2 and enabling 
VSCF equipment. During the mode switching process, a 
small speed decrease can be observed in Fig. 9 since the shaft 
machine is out of power and the speed is maintained by the 
inertia effect of the drive train. It, therefore, requires that 
the mode switching process could be completed as soon as 
possible.

After the SPG integration, the ship can finally be driven 
by the shaft machine under PTH mode independently. It 
takes about 10 s to complete the whole start process, which 
is fast enough for ship and mainly decided by the capacity 
of shaft machine and the aggregated inertia of drive train 
(including shaft machine, gear box and propeller). Note that, 
the adjustable maximum speed (about 800 rpm) is limited by 
the rated torque of shaft machine as shown in Fig. 8, which is 
much less than its nominal maximum speed under the hybrid 
generation and propulsion modes with ME (1300 rpm).

As shown in Fig. 10, the electromagnetic torque Tem 

oscillates at the beginning of the start-up, which is a typical 
characteristic of induction machine being started directly in 
full voltage. The oscillation only lasts for a short time (within 
2 s) so that it will not damage the machine.

The waveform of stator voltage Ustator is plotted in Fig. 11. 
It is shown that the stator voltage is restrained by the SPG 
when the stator connects with SPG in both IM and DFIM 
modes. In the mode switching process, the stator voltage 
drops as the result of field energy dissipation.

The waveform of stator current Istator and rotor current 
Irotor are plotted in Figs. 12 and 13. While the machine works 

Fig. 9. Speed of shaft machine during start process under PTH mode.

Fig. 12. Stator current of shaft machine during start process under PTH mode.

Fig. 10. Electromagnetic torque of shaft machine during start process under 
PTH mode.

Fig. 13. Rotor current of shaft machine during start process under PTH mode.

Fig. 11. Stator voltage of shaft machine during start process under PTH mode.
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Fig. 14. The detailed waveform of stator voltage during mode switching.

Fig. 17. The detailed waveform of rotor current during mode switching.Fig. 15. The detailed waveform of rotor voltage during mode switching.

Fig. 16. The detailed waveform of stator current during mode switching.
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in IM mode, about 3 times over-current can be seen in the 
simulation results immediately after the machine is started 
up. The currents decrease gradually following the speed 
increase within 4 s. Note that, the large starting current will 
cause a non-negligible impact on both SPG and the electric 
machine. This could be suppressed by using the SCR based 
soft-start technique but with some additional equipment 
and cost. After switch into the DFIM mode, the currents are 
controlled in the nominal value to propel the ship under PTH 
mode safely.

2) Results of the Mode Switching Process
To further clarify the method, the detailed simulation 

results during mode switching process are plotted in Figs. 14 
-17.

After Ks1 is opened, the VSCF equipment cannot be 
directly enabled to control the shaft machine. Before re-
excitation by the VSCF equipment, the electromagnetic field 
energy in the machine must be well dissipated. To speed 
the process, Ks2 is kept closed and the energy is mainly 
consumed by the crowbar resistor in the sub-step (1). As a 
result, Ustator, Urotor and Irotor reduce gradually (shown in Figs. 
14-17). Meanwhile, Istator reduces to zero quickly (shown 
in Fig. 16). Ks2 will not be opened until Ustator, Urotor and Irotor 

reduce to an acceptable level which is ready for enabling the 
VSCF equipment.

In the sub-step of re-excitation, the machine is controlled 
by the VSCF equipment. It is shown that the rotor current 

Irotor increases within 50 ms to the magnetization current level 
(see Fig. 17) and the stator voltage Ustator is established (see 
Fig. 15) ready for grid integration. As shown in Fig. 16, the 
impact of SPG integration is ignorable.

IV. Experimental Study

Experimental study was carried out to validate the feasibility 
and effectiveness of the method.

A.  Setup of Experimental Platform

The experimental platform is shown in Fig. 18 and the 
parameters are listed in Table III. In this experimental 
platform, a wound-rotor induction machine is installed to 
operate as a DFIM. The VSCF equipment contains two 
PWM converters, where GSC adopts a commercial 15 kW 
active front end (AFE) and RSC is built using a 1200 V/100 A 
IGBT power module. The controller is designed based on the 
TMS320F28335 DSP. For safety reason, the DFIM operates 
under the derating conditions (less than 300 V/3.5 kVA) 
through a variac. Switching of the machine between DFIM 
and IM modes is realized by Ks2.

B.  Experimental Results

The proposed method is tested on the experimental plat-
form. The waveforms of stator voltage Usab, grid voltage 
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Ugab, stator current isa and rotor current ira during the start 
process under PTH mode are plotted in Figs. 19-22.

The waveforms of the whole start process under PTH 
operation are shown in Fig. 19. Firstly, the machine with 
rotor windings shorted by Ks2 is connected to the grid directly 
through Ks1. Then, Ks1 and Ks2 are opened when the speed 
exceeds the normal range of DFIM. After that, the machine is 
re-excited and integrated into the grid so that it can operate as 
a normal DFIM. So far, the whole start process is completed.

The detailed waveforms during machine start in IM mode 
are shown in Fig. 20. It can be seen that the stator voltage 
Usab increases to the grid voltage Ugab immediately after Ks1 
is closed and decreases rapidly after Ks1 and Ks2 are opened. 

Fig. 18. Setup of experimental platform. (a) Schematic diagram. (b) Picture 
of experimental platform.

Fig. 19. The waveforms of start process under PTH operation.

Fig. 20. The detailed waveforms during machine start in IM mode.

Fig. 21. The detailed waveforms during mode switching process.

 rewop detaR 7.5 kW 
 mpr 0031 deeps detaR

Rated rotor current 26.5 A 
DFIM/IM Rated stator current 18 A 

Stator/rotor ratio 2.05 
 3 sriap eloP

Range of slip 0.3~0.3 

IGBT module 7MBR100U4B120
RSC Rated dc voltage 580 V 

Rated current 50 A 

 ledoM Delta:AFE150A43
 rewop detaR 15 kW 

GSC Rated input 323~528 V 35 A
Rated output DC 660 V 33 A

L filter 4.18 mH/35 A

TABLE III
Parameters of Experimental Platform
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Fig. 22. The detailed waveforms during grid integration.
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1 kV/div

1 kV/div

100 A/div

200 A/div

10 ms/div

Grid integration

The stator and rotor currents (isa and ira) reach about 4 times 
over-current shortly (less than 350 ms) after Ks1 is closed, 
which is consistent with the simulation results. When the 
speed increases, the frequency of rotor current ira reduces 
to 0 Hz gradually and the stator current isa also reduces to 
a relatively small magnetizing current. The speed reaches 
1000 rpm at the end of the IM mode.

Fig. 21 shows the detailed waveforms during mode 
switching process to DFIM mode. A stable stator voltage Usab 
is established with the machine re-excitation control, which 
is critical for grid integration. From Fig. 22, it can be seen 
that the impact of grid integration is ignorable as a result of 
precise control. In additionally, the frequency rotor current 
at the moment grid connection is 15 Hz, which means the 
speed of DFIM is 700 rpm just within the normal speed 
range. After grid integration, the stator current isa maintains 
zero until the speed is adjusted.

V. Conclusion

In this paper, an approach to start an SHG system employing 
DFIM under PTH mode is presented to reduce the cost 
and volume of the traditional synchronous or induction 
machines based SHG systems. The principle of the method 
is discussed in detail and its feasibility and effectiveness are 
confirmed by simulation and experimental studies. Research 
results show that the DFIM SHG system can be easily started 
under PTH mode with a minor hardware modification and 
adequate control algorithm. It is expected that this study is 
helpful to improve the technical and economic performance 
of SHG technology.
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Investigation on the Small Signal Characteristic Based 
on the LLC Hybrid Hysteretic Charge Control

Richard (Hua) Yang, Brent A. McDonald, and Yalong Li

Abstract—In this paper, an analytical small-signal model applied 
for hybrid hysteretic charge (HHC) control has been proposed and 
analyzed with the advantages over direct frequency control (DFC). 
Based on the approach of extended describing function method 
and average concept, for the first time, the systematical analytical 
open loop transfer functions from control to output, input to output, 
output impedance and the closed transfer functions of the overall 
loop, audio susceptibility and output impedance are proposed and 
verified through simulation. Additionally, some important physical 
insights have been extracted, analyzed and verified. Finally, the 
experiments on a design example of 12 VDC&12 A output power 
are conducted and verified. It shows that the calculations match well 
with the results from both the simulation and experiment, which 
reveals the proposed analytical transfer functions are very useful for 
the practical power design to achieve good prediction result.

Index Terms—Analytical small signal model, hybrid hysteretic 
charge (HHC), hybrid hysteretic charge control, LLC, UCC25630.

I. Introduction

WITH the increasing requirement on power efficiency and 
power density, the LLC topology has become into one 

of the most popular topologies of the isolated power converters. 
Numerous articles [1]-[6] have been created to show the best 
design optimization methods. However, there are the challenges 
for the conventional DFC LLC converter regarding the control 
design and loop optimization when input voltage and output 
voltage have been specified strictly to be within a varied range, 
in which the task of loop design is hard to be optimized. As 
for the small signal modeling on PWM converters, the state- 
space approach based on the average concept proposed by 
Middlebrook and Cuk [7] is accurate within a limited frequency 
bandwidth. Later R. Ridley [8] had proposed an improved 
methodology with the concept of the three-terminal switch, 
on which the good prediction result in many PWM converters 
are achieved [9], [10], [11], [12]. In recent years, the advanced 
describing function method has been successfully applied to 
most of current control converters with the accurate analytical 
transfer functions up to the switching frequency in [13]−[14]. 
However, all these methodologies are hard to obtain a good 
result if applying to the resonant converter where the switching 
frequency components and its harmonics have been turned into 
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the dominant variable part and the beat frequency dynamics 
has occurred. Then the extended describing function method 
proposed by E. X. Yang [15]−[16] had been successfully 
applied to the resonant converter to predict the beat frequency 
dynamic behavior accurately.

To work out the model of LLC converter, lots of researches 
[17]−[20] based on the extended describing function or other 
similar averaged modeling concept [21] have been employed 
and the results are proved to be accurate to predict the beat 
frequency dynamics. However, the models are still hard 
to meet the practical engineering design due to its lack of 
analytical transfer functions for the physical insight extraction 
and most precise modes are only based on the simulation 
in which the physical insight is hard to yield. It is not until 
recent years that S. Tian [22]−[23] simplified the model from 
the 5th order to a 3th one with a result of an analytical transfer 
function for both SRC and LLC converter. Followed by this, 
Y. Hsieh has employed a novel rotating coordinate modeling 
concept to the SRC converter and achieved the most precise 
prediction results based on the describing transfer function 
[24]−[25], in which the best accurate analytical transfer 
function has also been extracted but it is still expected to 
extend to the LLC converter. As a conclusion, there is the 
challenge for the conventional DFC LLC control to apply 
to most of the applications due to its not good transient 
performance by the intrinsic loop characteristic.

To solve this problem, several new LLC loop control 
schemes have been proposed in recent years. The first one 
is the average current control [26]−[27], in which the tank 
current has been sensed and scaled and then participate in 
the loop control, it is proved to be with the advantages over 
the DFC control on input ripple cancellation but still owns 
the room for the further improvement in terms of the load 
transient performance. The second one is the charge control 
[28], which compares the total input charge with the control 
voltage to modulate the switching frequency, then an inner 
current loop is offered to yield the fast-transient response. 
Another hysteretic charge control [29]−[30] can also achieve 
the good dynamic load performance by sensing the current 
of tank current or voltage of resonant capacitor, but the 
DC gain of control to output is with a little big variation 
during the full load range which will bring the difficulty of 
loop design at light load. However, there are not the detail 
analytical transfer functions to describe the whole physical 
insight regarding their small signal characteristics.

In view of the metioned above issues, the HHC control, with 
the combination of charge current control and hysteretic 
charge control, is proposed to achieve the best-in-class 
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transient performance by overcoming the disadvantage of 
charge control and avoiding unstable condition by adding 
into the frequency compensation ramp [31]−[33]. It has 
changed the plant transfer function to an equivalent first 
order system characterized by a relatively stable cross 
frequency and small variation of DC gains, which has 
made the loop design easy to compensate.

In this paper, the small signal model for new LLC 
converter will be proposed firstly, which is not purely 
depend on the approach of extended describing function 
and the related superposition theorem, but the improved 
results of a third order transfer function from this theorem. 
In Section II, the transfer functions of the proposed model 
are derived and simplified for the purpose of physical 
insight investigation. Different from the conventional 
DFC control, the proposed model replaces the small signal 
variable of Fs by that from feedback control. In Section III  
and IV, the derived analytical transfer functions regarding 
the open loop of control to output, input to output, output 
impedance and that of the closed loop are verified through 
simulation, in which, the detail physical insight analysis are 
provided. In section V, the experiment of practical design 
is conducted to verify the proposed transfer functions. 
Section VI summarizes the paper. 

II. Small-Signal Model for HHC Control

As shown in Fig.1, the key difference between HHC 
and the conventional DFC is the added feedback signal of 
VCR, which is a combination of the internal current ramp 
part and the divided scaling part from the voltage of the 
resonant capacitor Cs [31]−[32]. Refer to Fig. 1, VHS is 
the input voltage of the half bridge LLC tank, VTL and 
VTH come from the compensation voltage Vcomp, they 
are symmetrical based on a reference voltage VCM (for 
example 3 V) and then will be compared with VCR. So vcrl 
and vcrh are produced henceforth to provide the input signal 
for the S/R latch, therefore, the final drive signal Gate_L 
and Gate_H can be produced based on another deadtime 
control signal for the S/R latch. As shown in Fig. 2, vcrl 
will turn high and then pull Gate_L low when VTL crosses 
VCR at time of t0, then the VHS begin to rise, when the 
rising of VHS completes or the dead time elapses at t1, 
Gate_H will turn high. At the next time of t2 when VTH 
has crossed VCR, vcrh will turn high and then pull Gate_ H 
low, then the VHS begins to decrease, when VHS finishes 
this process or the dead time has been elapsed at t3, Gate_L 
will turn high.

A. Small Signal Model for LLC HHC Control

For a conventional DFC control, the simplified analytical 
transfer functions have been proposed [22]−[23], in which 
the capacitor small signal model has turned into an inductor 
small signal model. So, the original small signal model of 
LLC tank has been simplified greatly from an above fifth-
order equivalent circuit into a third-order equivalent circuit. 
This has provided the great possibility to extend this result 

to other kinds of LLC control topology.
As for HHC, it is critical to investigate the key difference 

compared with DFC, which is the scaling voltage sense 
of the resonant capacitor voltage. Fig. 3 shows the key 
waveforms between input current Iin, tank current ILs, voltage 
of resonant capacitor Ucs, tank input voltage VHS, High side 
Gate drive Gate_H, low side Gate drive Gate_L, VCR, VTH 
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Fig. 1.  The proposed HHC control used in LLC HB converter.

Fig. 2.  Proposed hybrid hysteretic control used in LLC converter. 

Fig. 3.  Waveforms between the tank part and the VCR part for HHC control.
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and VTL.
As shown in Fig. 1, the scaling voltage part in VCR is 

obtained from the divided voltage of Cs by the capacitors CdivH 
and CdivL. The scaling down coefficient can be defined as:

(1)

It is generally assumed the dead time Δt of the gate drives 
to be equal. Fig. 3 shows the details regarding the Iin and 
VHS, and then the average input current can be obtained as:

(2)

If defining the voltage of Ucs at t0 and t0 + 0.5Ts as Ucs_thL 
and Ucs_thH, and the tank current as ILs0 at t0, then (2) can be 
re-written as:

(3)

It shows the minimum dead time is considered from (3), so the 
input power under steady status can be finally written as:

(4)

In the configuration of HHC method products such as TI 
UCC25630X series, the quantity of Ucs_thH can be sensed 
by the voltage of VCR pin even though there is another 
combination of ramp current by the internal frequency 
compensation. Shown as in Fig. 4, the scaling voltage λ (Ucs-
0.5 Vin) will cross th e quantity of Vth_H-VCM (the combined 
quantity of feedback and ramp current) with a value of 
VthH-VCM when Gate_H turns off, the operation principle 
will be elaborated by the formulas (5)-(7).

From the operation principle of HHC control, the compen-
sation part in terms of integrating frequency control into 
VCR voltage is paramount for the investigation, if we define 
the internal coefficient for the ramp compensation as:

(5)

Then the following equations can be obtained as:

(6)

(7)

If we define the conversion efficiency from primary side 
to secondary side as η, Vf as the average forward voltage for 
a rectifier on the output side, Isec as the LLC tank’s output 
current, Io as the external load current, and Z(s) as the LLC 
output impedance, then the following equation can be 
obtained if the formulas of (5)-(7) are combined into (4).

(8)

In above (8), there are four variables Vo, Vin, VthH and Io,which 
are mainly with DC components but not include the 
switching frequency components and its harmonics, then the 
conventional average concept [1] can be applied to derive the 
related  small  signal  small  equation.  For  the  theoretical 
manipulation, we can ignore the quantities of Vf  and η. 
Perturbing on the above formula (8) with the quantities of 
Vo, Vin, VthH and Io by vo, vin , vthH , o respectively, we can 
obtain the following small signal equations:

(9)

where:

Refer to Fig. 4, the small signal average concept can also 
be employed based on (6). Perturbing on the variables of 
Vcomp, Fs and VthH by vcomp , , vthH , then we can obtain the 
following:

(10)

Combining (10) into (9), we have:

(11)

Fig. 4.  Operation principle of TI HHC control with ramp current.
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So, the correlation in terms of small signal variables among 
input voltage, output voltage, compensation voltage, operation 
(7) frequency and external output current have been built by (11).

B. Implementation of the Analytical HHC Small Signal 
Transfer Function

Equation (11) shows that the small signal perturbation of the 
output Vo has one more of the small signal variable Vcomp than 
the conventional DFC control due to the characteristic of HHC 
control, where the compensation feedback signal is only directly 
related to Vcomp but not Fs from the control block. It is taken 
for granted that only one variable Vcomp is incorporated into 
the open loop of control to output finally, then the small signal 
variable of Fs is required to be cancelled in the final control 
block. However, it is not straightforward to implement such a 
behavior in the control block directly; therefore, it is required to 
make a mathematic manipulation from the conventional DFC 
control to replace the small signal variable of Fs provided that the 
analytic small transfer function is given. Refer to the simplified 
analytic transfer functions applied for a DFC control [23], the 
perturbation of Vo can be expressed by the open loop transfer 
functions of input to output Gvg_DFC(s), control to output Gvf (s) 
and output impendence Zo_DFC(s), which is shown as:

(12)

Fig. 5 shows the small signal equivalent circuit for the 
LLC HHC control.

Even the concept of extended describing function proposed 
by Dr. E. Yang has been used widely for the small signal 
analysis both for SRC, LLC and other types of resonant 
converters [16], most of the models are accurate enough 
to make a good prediction regarding the small signal 
characteristic over a wide frequency range. However, most of 
them are featured by complicated mathematics expressions 
or the circuit simulation-oriented way, their analytical based 

formulas are still hard to be derived due to the higher order 
of the model. To simplify the order of the model, Shown 
in Fig. 6. Tian had tried to propose a simplified model 
successfully by turning the equivalent signal model circuit 
of the resonant capacitor into an equivalent model featuring 
inductor behavior [22]−[23], then the original small signal 
circuit of LLC tank has been simplified greatly from the 
original fifth-order equivalent circuit into a third-order 
one, which has provided the great possibility to obtain the 
analytical expression.

However, the ESR of the output capacitors is neglected 
due to the practical use of ceramic capacitors as far as the 
analytical small signal transfer function is concerned [23]. 
For the scenarios of using electrolytic capacitors, the ESR 
shall be considered. Shown in Table I, the analytical transfer 
functions have been modified to achieve this.
The combination of the formulas (11)−(13) will result in a 
final small signal transfer function shown as below:

(13)

Then the transfer function of LLC HHC control can be 
obtained as follows:

(14)

where:

If we define GDC_vg as the DC gain of Gvg_DFC(s), GDC_dm 
and GDC_cm as the DC gain of Gvf_DFC (s) under the conditions 
of fn ≤ 1 and fn ≥ 1 respectively ( fn is the normalized operation 
frequency), then the transfer functions of open control to 
output loop Gvc_HHC(s), open input to output loop Gvg_HHC(s), 
open output impedance Zo_HHC(s) can be simplified into 
the analytical formula expression after the mathematic 
manipulations [33], which is also shown in Table II.

Fig. 5.  Small signal equivalent circuit for the LLC HHC control.

Fig. 6.  Simplified equivalent small signal model for the resonant capacitor 
proposed by S. Tian.

 
 
 
 

1 11

ics ics

ωs

vcs

Cs

jCsΩs

jCs

Vcs

vcs

ωsΩs

VcsjCsΩs
CsΩs

2

v v

o o ov v v

L

L

f

f
f

f
f

L

Z  _DF

R. YANG et al.: INVESTIGATION ON THE SMALL SIGNAL CHARACTERISTIC BASED ON THE LLC HYBRID HYSTERETIC CHARGE CONTROL



132 CPSS TRANSACTIONS ON POWER ELECTRONICS AND APPLICATIONS, VOL. 4, NO. 2, JUNE 2019

2

2

π

π

π π

π

π

π

π

π

π

π

π
πsin

sin

8

8

π

Transfer Functions for the Conventional DFC LLC Converter

n

n
n

n

n
n

n n
n

n n

n n
n

n

n

n

d

n

n

ee L e

n

n

n n
n

n
n

n

n

n

n

n

n

e

e

L e

L

e

e e eL

L

π

π π
π

π π

π
πn

n

n

n

n

L

L
Le

e L

L

n
o

   _DFC

TABLE I
Transfer Functions for Conventional LLC HB Converter



133

TABLE II
Transfer Functions for LLC HHC HB Converter
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III. Verification on the Analytical Transfer 
Funcntions

The small signal characteristic of LLC HHC converter 
will be fully verified and investigated in this section through 
simulation based on a design example with major power 
stage parameters setting by: Vin = 370 VDC−410 VDC, Vo = 
24 VDC, RL = 2 Ω, Lm = 330 uH, Ls = 50 uH, Cs = 44 nF, 
Co = 470 uF×4, Rc = 24 mΩ/4, N = Np/Ns = 25/3. The related 
SIMPLIS simulation is used based on the circuits shown as 
in Fig. 7.

A. Verification and Analysis on the Transfer Function of 
Open Control to Output

Based on the transfer functions presented in Table I and 
Table II, the open loop transfer functions for the HHC 
control for the UCC25630X products can be verified 
further by using the same approach, in which the related 
small signal plots regarding the open control to output 
under the scenarios of fn > 1 and fn < 1 are obtained through 
calculation. To have a contrast, the simulation is conducted. 
As shown in Fig. 8, the results between SIMPLIS simulation 
and calculation are given under the input condition of 370 VDC 
and 410 VDC with the output being 24 VDC&12 A. The 
dashed lines show the simulation results and the solid lines 
show the calculation results.

It is shown from Fig. 8 that the calculation results match 
well with the simulation results in both the conditions. 
However, the calculation results do not match the simulation 
results well when frequency increases up to half of the 
operation frequency due to the simplified third-order of the 
model and the incorporated average concept, but it does not 
have any impact on the practical prediction.

In order to investigate the characteristic of HHC and the 
advantage over the conventional hysteretic control, the DC 
gain of Gvc(s) for these two approaches are analyzed. Refer 
to Table I, the DC gain of Gvc(s) can be simplified as:

(15)

While

For the HHC, the DC Gain will be inversely proportional 
to λ from (15), another variable is kIramp, in which the variable 

of Iramp has been incorporated. However, it is not the case for 
the conventional charge control. So, the difference can be 
found through the approximate DC gain plot referring to the 
variables of RL and fn. Shown in (16), the normal constant of 
kIramp can be removed and the DC gain for the conventional 
charge control can be obtained.

(16)

With the incorporation of GDC_vg (RL, fn) and GDC_vf (RL, fn) 
shown in Table I, the approximate DC gain plot between the 
HHC control and the conventional hysteretic charge (HC) 
control can be illustrated in Fig. 9. To have the investigation 
on the DC gain over a practical design input voltage range, 
the plotting under different output load for HHC control 
is shown in the left part of Fig. 9, where three items of 
the curve tendency can be observed: firstly, the overall 
DC gain is proportional to Vin under a certain output load 
even though there is a special case when fn is below 1, in 
which the gain will not decrease at once but it will decrease 
finally with respect to the decreasing of fn. Secondly, the 

s    10

Fig. 7.  Circuit for the simulation verification (dead time is set as 200 ns).

Fig. 8.  Plot comparison of control to output between simulation and 
calculation under the condition of 370 VDC@24 VDC&12 A ( fn = 0.82) and 
410 VDC ( fn = 1.08) @24 VDC&12 A.
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gain will decrease when more of the output current is loaded, 
which means it will increase under a light load condition. To 
the third, the delta value of DC gain under those two different 
load conditions will decrease when fn is increased. As shown 
in the right part of Fig. 9, we can obtain the comparison results 
between proposed HHC control and conventional hysteric 
charge control: firstly, it is concluded that the gain in HC control 
is with the similar operation discipline, it will increase when 
fn increases under a certain output current, but the delta value 
of DC gain under those two conditions is different. Refer to 
right part of Fig. 9, the solid line and the dashed line represent 
the plot curves of HHC control and HC control respectively, 
it shows the DC gain of HC control nearly approaches that of 
HHC control under full load condition, but it increases more 
under light load condition. As a conclusion, the control design 
for a conventional hysteric charge control still faces some 
challenges if compared to HHC control.

To verify this conclusion, the simulation is conducted under two 
different output load conditions of RL = 2 Ω and 6 Ω when input 
voltage is varied from 350 VDC to 450 VDC. Shown as in 
Fig. 10, it can be observed that the DC gain follows the similar 
operation discipline concluded above: the gain will decrease 
as output load increases from RL = 6 Ω to RL = 2 Ω , the delta 
value of the gain under a same varied input range will decrease as 
output load decreases from RL = 2 Ω to RL = 6 Ω.

Fig. 11 shows another investigation when the output varies 
under a certain input, it can be concluded that the DC gain of the 
Gvc(s) has some small variation under the rated output load, the 
lower the input voltage is, the lower the gain can be obtained. 
From another point of review, the DC gain will decrease with 
the increase of output load under these two input conditions, the 
delta value of the gain under a same varied output load range 
will decrease with the increase of input voltage.

It shows from Figs.10−11 that the cross frequency for the 
closed loop shall be below the zero of output electrolytic 
capacitors and also required to avoid the impact range 
of high frequency dynamics occurring behavior. In order 

to yield an easy design for the compensation circuit, the 
transfer function of open control to output is required to be 
simplified. Take the scenario of fn ≥ 1, for example, if the 
high order poles shown in Gvc(s) are neglected, then the 
transfer function of open control to output can be simplified 
further as follows:

(17)

The cross frequency can be approximated as:

(18)

The above (18) can be further simplified as:

(19)

The investigation regarding the cross frequency on 
(19) has been revealed that the factor δ (RL, fn) is much 
smaller than the value of the variable o / kf in the practical 
application, then the cross frequency can be simplified 
further as:

(20)

Equation (20) shows that the cross frequency for the open 
control to output is firmly related to the operation frequency 
no matter whatever the output load is, which can be verified 
from the results shown in Fig. 11, where the cross frequency 
is proved not to be affected by the output load directly. 

1                                         1.5                                          2
0

f
n

1                                         1.5                                          2f
n

Fig. 9.  DC gain plot comparison between the HHC and the conventional 
hysteretic charge control.

Fig. 10.  Loop simulation of control to output when the input voltage varies.

Fig. 11.  Sweep of control to output when output current varies.
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Fig. 12.  Plot comparison of input to output between simulation and 
calculation under the condition of 370 VDC@24 VDC&12 A (fn = 0.82) 
and 410 VDC (fn = 1.08) @24 VDC&12 A.

Fig. 13.  DC gain plot of input to output under HHC control and conventional 
HC control.

Fig. 14.  Plot of input to output under the variation of output load.

Another scenario of fn ≤ 1 can also be verified by using the 
same approach mentioned above. With this characteristic, 
it is concluded that the compensation circuit can be easily 
designed for the HHC control.

B. Verification and Analysis on the Analytical Transfer 
Function of Audio Susceptibility

To investigate the audio susceptibility, the plot of open transfer 
function of the input to output is carried out. Fig. 12 illustrates 
such a result comparison between simulation and calculation 
in both the input condition of 370 VDC and 410 VDC. It is 
revealed that the mathematical calculation results match well 
with the simulation results except the occurrence of the error 
when the frequency goes up to half of the operation frequency.

As shown in Fig. 12, it can be seen the gain decreases 
more after the first poles ωT (fn ≤ 1) and ω1 (fn ≥ 1). As 
for the practical applications where the ripple frequency of 
PFC is around 100 Hz, the closed audio acceptability shall 
be firmly related to the DC gain of the transfer function. 
Equation (21) shows the formulas of the DC gain based on 
the variables of output load and the normalized frequency, 
the approximated gain can be obtained by (22) at the 
operation condition of the resonant frequency. As for the 
conventional HC control, the DC gain can be obtained by 
setting kramp as zero based on (21)−(22).

(21)

(22)

Fig. 13 illustrates the operation principle regarding the DC 

gain versus output load for both the conditions under HHC 
control and HC control. It is revealed that the gain decreases 
with the increase of Vin or output current for HHC control. 
As shown in the left part of Fig. 13, the gain is with small 
variation when LLC operators near the resonant frequency 
(fn = 1) during the load range of 2 A to 12 A. However, it 
drops much as the output current increases. As a contrast, 
the gain nearly remains the same when LLC operates below 
the resonant frequency point (fn < 1) for the conventional HC 
control and the overall variation shall be relatively smaller 
than that in the HHC control.

To verify this principle for HHC control, the simulation 
is implemented to make load sweep analysis based on the 
transfer function of Gvg_HHC(s) when input is 400 VDC and 
450 VDC respectively. As shown in Fig. 14. the DC gain 
increases as output current decreases for both conditions, 
which matches the result obtained from Fig. 13, the overall 
variation is small when LLC operates at the resonant 
frequency point and the gain at 450 VDC is relatively 
smaller than that of the condition at 400 VDC, which is 
consistence with the calculation result in (21). With this 
analysis, we can refer to (22) for the further physical insight 
analysis regarding the practical design as far as the closed 
transfer function is concerned.

C. Close the Voltage Loop

Based on the good match between theoretical calculation 
and simulation for the open loop control-to-output transfer 
function, the feedback voltage loop can be constructed for 
the overall closed loop stabilization. Fig. 15 shows two kinds 
of compensation circuit regarding the way of Rf’s power 
connection, one way is connecting to the output Vo, another 
way is connecting to a regulated voltage VDD. In this paper, 
let’s take the second connection way for example, in which 
only the DC gain of the OPTO is considered to have a simple 
transfer function derivation for the compensation circuit.

_Gvg_HHC_fo
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Shown in Fig. 15, the parameters are set by Rup = 97.7 kΩ,
Rv = 60 kΩ, Cv = 4.7 nF, Rf  = 5 kΩ, Cf  = 20 pF, and CTR = 0.35. 
Care need to be taken that the additional soft ramp circuit 
for the purpose of avoiding the output overshot may 
be suggested to add in the practical design. As for the 
UCC25630x series, it is specially noted that the equivalent 
circuit consist of 82 uA inner current source and Rfb insider 
the chip shall be considered to form a whole compensation 
circuit. Since Vcomp in Gvc_HHC(s) is 0.5 times of the voltage on 
Rfb inside the chip from Table II, we can use this value for the 
calculation. So, the transfer function for the compensation 
circuit can be obtained as:

(23)

The overall loop is then obtained as follows:

(24)

Fig. 16 shows the plot comparison of the overall loop 
between simulation and calculation under the input condition 
of 370 VDC and 410 DC respectively.

It shows the good matched result between the simulation 
and calculation can be achieved within a wide range of 

frequency, in which both the cross frequency and phase 
margin are nearly the same. The cross frequency of the 
closed loop is nearly in proportion to the operation frequency 
in these two conditions.

IV. Characteristics Under Line Change and Load 
Change

A. The Closed Audio Susceptibility and Characteristic of AC 
Ripple Rejection

Based on Gvg_HHC(s) shown in Table I, the closed audio 
susceptibility can be obtained as follows:

(25)

To verify the result at the condition of 12 A output, the 
comparison between simulation and calculation under 370 VDC 
and 410 VDC can be obtained as shown in Fig. 17.

It can be seen the good matched results can be achieved 
between the simulation and calculation and then it can be 
proposed to evaluate converter’s line regulation by applying 
into the time domain.

To characterize the input voltage rejection, the PFC input 
voltage is applied by a combinated value of DC part and AC 
ripple part. Based on the AC line frequency of Fline, the AC 
voltage part can be written as:

(26)

So, the corresponding output voltage can be calculated as:

(27)

Take the condition of fn > 1 for example, when the input 
varies from 405 V to 425 V based on an AC line frequency of 
100 Hz, the calculation result of output from (27) is shown 
in the right part of Fig. 18, it reveals the average variation of 

Fig. 15.  Feedback circuit for the loop compensation.

Fig. 16.  Overall loop plot comparison between simulation and calculation 
under the condition of 370 VDC@24 VDC&12 A (fn = 0.82) and 410 VDC 
(fn = 1.08) @24 VDC&12 A.

Fig. 17.  Results comparison of closed audio susceptibility between simulation 
and calculation under the condition of 370 VDC@24 VDC&12 A (fn = 0.82) 
and 410 VDC (fn = 1.08) @24 VDC&12 A.
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output ripple is only 20 mVDC, which is consistent with the 
result of simulation shown in the left part of Fig. 18.

To demonstrate the input ripple rejection characteristic 
further, a big ripple of 60 VAC is applied based on the 400 VDC 
under the same line frequency, the comparison results 
between simulation and calculation are obtained as shown 
in Fig. 19, which is observed that the output variation from 
the calculation is 38 mV, which matches well with the 
simulation result.

So, it is concluded that the LLC HHC control has the advan-
tage over the conventional DFC control regarding the input 
voltage rejection, which means the decreased value of PFC 
electrolytic capacitors for HHC control will not affect the 
performance of output characteristic.

B. The Closed Output Impedance and Dynamic Load 
Transient Characteristic

Since the transfer function of open output impedance is 
derived in Table II, it can be used to obtain the closed output 
impedance, which is shown as:

(28)

The comparison between simulation and calculation under 
the input condition of 370 VDC and 410 VDC and the output 
condition of 24 VDC&12 A can be obtained from Fig. 20. It 
shows the results match well over a wide frequency range, 

especially for the bode plot. However, there is some variation 
for the phase plot comparison when frequency approaches 
the operation frequency. Further investigation shows it is 
caused by the non-precise zeros of Zo_HHC(s) occurred in the 
high frequency range due to the averaged concept employing 
on a simplified LLC tank model [22]−[23], which has been 
hard for us to obtain the precise high frequency dynamics. 
However, the phase calculation will match the simulation 
well if the high frequency zeros are assumed high beyond the 
operation frequency. Then the closed output load dynamic 
response can be investigated through the conversion from 
frequency domain into time domain based on (28).

Since the dynamic step load can be simplified by a squared 
wave with a certain repetition frequency fts, the equation 
for the square wave under the transient frequency fts can be 
expressed as a Fourier series, which is given by:

(29)

where Istep is the load step and the corresponding output 
voltage can be calculated as:

(30)

Fig. 21 shows the comparison results between simulation 
and calculation under the input condition of 410 VDC and 

Fig. 18.  Comparison of the output between calculation and simulation, in which 
PFC is with a 20 VAC ripple based on the input of 415 VDC.

Fig. 19.  Comparison of output between calculation and simulation when PFC 
is with 60 V’s AC ripple based on 400 VDC input.

Fig. 20.  The plot comparison of closed output impendence between simulation 
and calculation under the condition of 370 VDC@24 VDC&12 A (fn = 0.82) 
and 410 VDC (fn = 1.08) @24 VDC&12 A.

Fig. 21.  Results comparison between simulation and calculation under the 
condition of 410 VDC input and 24 VDC&9 A-15 A-9 A output.
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the output load condition of 24 VDC&9 A-15 A-15 A. It 
can be observed that the result of calculation matches well 
with the simulation result.

V. Experimental Verification

Shown as in Fig. 22, the proposed analytical small signal 
transfer functions regarding the open control to output loop 
and the closed overall loop can be verified further through 
the experiment on a 70″250 W TV power board by using 
UCC256304, in which, the output is 12 VDC&12 A. The 
main design parameters are given in Table III.

Based on the dead time setting of 200 ns, the operating 
frequency on the design board is: 94.3 kHz for 2 A, 90.5 kHz 
for 4 A, 89.6 kHz for 5 A, 88.5 kHz for 6 A, 86.5 kHz for 
8 A and 86.3 kHz for 10 A. The steady operation waveforms 
are shown in Fig. 23, in which the output ripple and the 
current though the resonant inductor are given. For the loop 
measurement, the AP instruments Model 300 is used as 
shown in Fig. 22. In order to obtain the plant loop, a 50 kΩ 
resistor is used to be in series with the lower output side of 
the OPTO FOD817A for the Vc pin measurement.

The open loop of power plant stage can be measured from 
UCC256304’s FB voltage, which is actually located on the 
terminal of the added 50 kΩ resistor from the lower output 
side of FOD817A. Fig. 24 shows the plot comparison results 
between the measurements and the calculations when it 

TABLE III
Parameters of LLC Converter for the Experiment

Fig. 23.  Waveforms of output ripple and current of resonant tank under the 
output condition of 12 VDC @2 A, 5 A, 8 A and 10 A.

Fig. 24.  Control to output plot comparison between measurement and 
calculation under the steady operation of 3 A, 6 A and 10 A output.
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Fig. 22.  The loop verification platform based on a TV power board.
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operates at 3 A, 6 A and 10 A respectively. The solid green 
lines represent the measurement results and the red dashed 
lines represent the calculation results, which show that these 
results match well practically. Though there may be concerns 
of dead time, it does not have impact from the prediction 
of the calculations if the frequency is given correctly. It 
is obvious to observe that the DC gain decreases with the 
increase of output current but the variation is relatively small 
compared to other hysteretic charge LLC converter. The 
cross frequency nearly remains the same result since the 
frequency variation is relatively very small.

To verify the transfer function of the overall loop, a 
practical precise model for the compensation circuit is 
required for this purpose because the transfer functions 
(23) is not with the consideration of the roll off frequency 
for FOD817A and TL431, which is necessary to obtain in 
practical measurement. Fig. 25 shows such a simulation 
example by pulling a 10 kΩ resistor at the emitter pin side of 
the opto-coupler for the rolling off frequency identification, 
in which the CTR is measured by 0.44 and the roll off 
frequency is verified to be 5 kHz. Refer to Fig. 15, with the 
other compensation parameters being set by Cv = 4.7 nF, 
Cf = 20 pF, Rv = 62  kΩ, Rup = 100 kΩ and Rf = 10 kΩ, the 
open loop plot of output to control can be obtained through 
simulation and measurement. Shown in Fig. 25, it can be 
seen the simulation result marked by the dashed red line 
matches well with the measurement result marked by the 
green solid line. With this consideration, a roll off pole is 
therefore added into (23) additionally, so the overall loop can 
be calculated precisely.

Fig. 26 shows the measurement results for the overall 
loop under the output of 12 VDC&4 A and 12 VDC&10 A 
respectively, it can be observed both the cross frequency and 
phase margin are featured by a very small variation under 
the two kind of output conditions, which is a special and 
comforting result characterized by HHC control.

To verify the result of the calculation by (24), the comparison 
between calculation and measurement are obtained under the 
output of 12 VDC&6 A. Shown in Fig. 27, the upside figure 
presents the measurement result and the downside figure 
shows the comparison under the output of 6 A. It reveals that 
the measurement result marked by solid line match very well 
with the calculation result marked by a dashed line up to half 
of the operating frequency.

In order to verify the characteristic under dynamic load 
condition, the waveforms of output voltage and resonant 

tank current are measured under the dynamic load condition 
of 12 VDC&(4 A-8 A-4 A) and 12 VDC&(8 A-12 A-8 A). 
Shown in Fig. 28, it can be observed the good dynamic 
performance can be achieved.

To verify the transfer function of closed output impedance 
given by (28), the dynamic load measurement is conducted 
based on a step current of 4 A-8 A-4 A with the slew rate setting 
by 3 A/us and step period-setting by 1 ms. Fig. 29 shows such 
a comparison between calculation and measurement. It can be 
observed both results match well, which proves that the closed 
impendence is with good practical use for the practical design 
and applications based on LLC HHC control.

Fig. 25.  Compensation plot comparison between simulation and measurement.

Fig. 27.  Overall loop measurement under the output of 12 V&6 A (on the 
topside) and the related comparison between the measurement and calculation 
(on the downside).
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VI. Conclusions

In this paper, the LLC HHC control has been introduced 
with the advantage of easy loop compensation and good 
dynamic characteristic compared to the conventional DFC 
control. The analytical small signal transfer functions 
applied for this control method have been therefore proposed 
and illustrated, in which the transfer functions of control to 
output, input to output, output impedance and the closed 
overall loop have been elaborated and verified. The overall 
comparison results based on the proposed transfer functions 
have been proved to match well with both the results from 
simulation and measurement in the most part of operating 
frequency range. More importantly, some physical insights 
related to the transfer functions are extracted and the design 
guideline for practical applications has been provided.
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Design of MMC Hardware-in-the-Loop
Platform and Controller Test Scheme

Guoqing Li, Di Zhang, Yechun Xin, Shouqi Jiang, Weiru Wang, and Jiahui Du

Abstract—The hardware-in-the-loop (HIL) simulation is an 
effective method to verify the overall function of the flexible 
HVDC transmission control and protection device. With this 
method, debugging the control and protection device can make 
the system run safely and stably after being put into operation. 
Therefore, a hardware-in-the-loop simulation platform modular 
multilevel converter (MMC) based on RT-LAB is established in 
this paper. Data merging between a converter valve control system 
and the real-time simulator is realized by high-speed optical fiber 
communication protocol conversion chassis, and the high-speed 
communication interface is designed to meet the requirements of 
the communication rate. Aiming at the control performance of the 
physical device, the test scheme is designed, and the test methods 
of voltage balance control and circulating current suppression are 
proposed. The closed-loop test of control and protection device is 
carried out by the active power step and AC/DC fault test. The 
above test verifies the validity of the HIL simulation platform of 
the MMC and the rationality of the testing scheme, and can meet 
the performance testing requirements of the control and protection 
device.

Index Terms—Control and protection device, device debugging, 
hardware-in-the-loop (HIL) , modutar miltilevel converter (MMC), 
simulation test.  

I. Introduction

NOWADAYS, building up of a global energy ntework has 
become an international consensus. It is urgent to innovate 

the advanced transmission methods to develop long distance 
and  large  capacity  transmission,  and  to  improve  not only  
the efficiency of transmission and the utilization of resources, 
but also the security, flexibility, and controllability of the power 
grid. Flexible high voltage direct current (HVDC) transmission 
has an independent, accurate, flexible and convenient active/
reactive power control mode, and it has the advantages of 
rapid recovery and control after power grid fault, which has 
a wide application prospect [1]–[4]. The modular multilevel 
converter (MMC) has become a trend in the future, because 
of its outstanding advantages, such as high output waveform 
quality and minimal loss. Compared with the traditional DC 
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commutation valve, two-level, and three-level converter valves, 
the modules of the modular multilevel converter need to be 
controlled independently. The complex structure of the control 
system also brings new problems to the design and test of the 
control system.

In order to ensure the reliable operation of the flexible 
HVDC converter valve, the domestic and foreign scholars 
and the research institutes have conducted a lot of research 
work on the design and simulation tests of the flexible HVDC 
transmission control system. In recent years, the modular 
multilevel converter real-time digital simulation of MMC 
based on FPGA (Field-Programmable Gate Array) technology 
has been greatly developed, because of the difficulties in the 
electromagnetic transient simulation of the switch valve caused 
by a large number of switching devices. The FPGA real-time 
digital simulation system and the control system are combined 
with the hardware-in-the-loop simulation which provides a 
means of improve the performance testing of the control system 
[5]–[6]. At the same time, the appropriate equivalent model is 
conducive to the simulation analysis of the system. For modular 
multilevel converter topology, the following three methods are 
usually used for steady-state analysis. The IGBT and its anti-
series diode in the sub-module are equivalent to one switch to 
improve the simulation speed [7]; MMC averagely simplified 
model method [8]; the capacitor in the sub-module is replaced 
by the time-domain Thevenin equivalent branch, and then the 
sub-module is equivalent to a Thevenin equivalent branch. 
Finally, the sub-module Thevenin equivalent branch is cascaded 
to form the Thevenin equivalent branch of the whole bridge 
arm [9]. The efficiency of steady-state simulation analysis is 
greatly improved by the methods above, but there are still some 
limitations in the system simulation with blocking sub-modules. 
In order to better simulate the dynamic response process of 
MMC, an equivalent sub-module is used to replace an arm, 
which is equivalent to a Thevenin equivalent circuit in the case 
of deblocking MMC, while the arm is equivalent to a half-
bridge uncontrolled sub-module with lumped parameters in the 
case of MMC blocking [10].

The control and protection system is the "brain" of the whole 
flexible HVDC transmission project. In the field of control and 
protection testing, MMC has a large number of sub-modules. 
Owing to the complexity of the control system, the system test 
is difficult and the workload is large before the actual project is 
put into operation. In order to simulate and debug the control 
and protection devices, it is an effective means of testing and de 
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bugging all kinds of steady-state, transient and fault conditions 
of the controller using the HIL simulation method [11]–[12]. 
The HIL simulation test can verify the real-time performance of 
the controller and the correctness of the protection device action 
under conditions close to the actual operating conditions, and 
modify the relevant settings of the actual controller. The HIL 
simulation is a relatively mature test method and has been widely 
used in the design verification of control platforms [13]–[15].

Most of the existing hardware-in-the-loop simulation methods 
introduced in the literature are still aimed at the verification 
of the designed controller, and few of them are fully tested 
and validated for the whole system. However, how to realize 
the communication interface between the digital simulation 
system and the actual device has not been referenced [16]–[17]. 
Therefore, in order to test the MMC flexible HVDC transmission 
control protection device, this paper designs a hardware-in-the- 
loop simulation test system based on RT-LAB. The MMC main 
circuit using the Thevenin equivalent model of reference [10] 
runs in RT-LAB. The data merge is realized through a high-
speed fiber-optic communication protocol conversion chassis. 
The physical side accesses control protection devices and forms 
a closed loop. According to the performance of the control 
protection device, the test scheme of converter station control 
and valve control is designed, and the dynamic performance 
test and function test of the actual control and protection device 
are completed by using the built platform. Unlike the traditional 
method, this method can reduce the actual project site debugging 
process and shorten the development cycle of the control and 
protection system.

II. Flexible DC System Structure

The overall structure and control system structure of the MMC 
flexible HVDC transmission system is given in Fig. 1(a) and (b). 
The control system is mainly composed of inner loop current 
controller, outer loop controller, phase locked loop, and pulse 
generation link. The two-terminal of the converter station needs 
to control the active component and the reactive component. 
Under normal circumstances, for a two-terminal active AC 
system, the rectifier side is generally used to control the active 
power and reactive power, and the inverter side controls the DC 
side voltage and reactive power. The converter valve control 
system receives the voltage reference wave from the converter 
station control and modulates the voltage using the nearest level 
modulation (NLM) or pulse width modulation (PWM) [18]-
[19]. The trigger signal is applied to the sub-module to complete 
the switching of the state so that the output voltage waveform 
is close to a sine wave. The converter valve control system also 
needs to complete the control of the sub-module capacitance 
voltage balance.

The safe and stable operation of the equipment in the flexible 
HVDC transmission system is the main responsibility of the 
protection system. In the event of a fault or abnormality, the 
faulty or abnormal operating equipment is quickly removed 
from the system to prevent equipment damage or other normal 
working parts from being affected so that it can ensure the safe 
operation of the DC system. This ensures the safe operation 

of the DC system. According to the different protected areas, 
protection can be generally divided into AC area protection [20]–
[21], converter area protection, and DC area protection [22].

Due to the high controllability of the MMC-HVDC, the 
control and protection system largely determines its dynamic 
performance. Therefore, it is necessary to carry out simulation 
tests on the converter station control, converter valve control 
and protection devices by the HIL simulation platform to test 
whether the performance can fulfill operational requirements.

III. Simulation Platform Design

A. Real-Time Simulator

The characteristics and safety requirements of the power 
system determine that the exploration and research of the actual 
power grid greatly depend on simulation. Due to the high 
precision of the switching action of the power electronic devices 
in the flexible HVDC transmission, the simulation step size used 
in the simulation analysis is generally about 100 μs in order to 
accurately simulate and analyze the switching behavior of the 
device. Therefore, electromagnetic transient simulation tools are 
mainly used in the research of flexible HVDC transmission, such 
as MATLAB/Simulink in RT-LAB.
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The implementation of the MMC main circuit depends on 
the upper computer and the target machine. The upper computer 
completes tasks, such as modeling, on-line parameter adjusting, 
signal monitoring, and C code generating to download the target 
machine. The target computer adopts the OP5600 with the Red-
hat operating system and the FPGA-based OP5607 as the real-
time simulator for the HIL simulation applications.

By using the RT-LAB software running on the upper 
computer to achieve the connection between the upper computer 
and the target computer, RT-LAB can divide the complex model 
into multiple parallel subsystems and then allocate it to different 
CPU cores of the OP5600. The first is to build the system in 
the MATLAB/ Simulink environment. Then, according to the 
principle of model segmentation under RT-LAB, a series of 
operations such as model compilation, interface definition, and 
loading code are completed. The digital model is then converted 
to real-time code running on the target machine. Finally, the 
target machine will output all the signals.

The HIL simulation experiment platform designed in this 
paper completes the construction of the MMC main circuit on 
the upper computer. The real-time monitoring of the running 
state of the converter station is completed by the computer, and 
its functions are verified.

B. Overall System Architecture

Fig. 2 shows the overall system architecture of the interface 
devices. The OP5600 in the diagram is mainly used as the 
main circuit calculation. The main circuit components and the 
corresponding parameter settings are calculated in the CPU 
of the OP5600. OP5607 is mainly used for converter valve 
simulation and IO interface, which It receives the drive signal 
through the optical fiber and sends out the corresponding sub-
module voltage. The IO interface is mainly used for the analog 
output and the corresponding digital signal input and output. The 
converter valve control device converts multi-channel optical 
signals into one or more signals by means of a communication 
protocol conversion chassis, completes the data integration 
work, and connects the OP5607 through the Aurora protocol to 
achieve information exchange including switching commands, 
capacitor voltage, and bridge arm current. The OP5607 internally 
completes part of the functional simulation of the sub-modules, 

and the data of the capacitance voltage of the sub-module is 
transmitted to the OP5600 via PCIe. The human-computer 
interaction interface is set in the monitoring background to 
realize the sub-module state, the function of the sub-module, and 
the display and setting of the control target and instruction. The 
converter station control device and the relay protection device 
are respectively connected with the OP5600, OP5607 through 
the IEC60044-8 protocol.

Fig. 3 shows the hardware connection diagram of the HIL 
simulation platform. The converter station control device needs 
to collect voltage signals on the AC side to complete the phase 
locked loop control. It uses the received DC voltage, active and 
reactive power reference values, and the voltage reference waves 
of the six bridge arms which are calculated through the inner 
and outer loop control. After electro-optical conversion, it is 
transmitted from the optical fiber to the converter valve control. 
The converter valve control passes through the photoelectric 
conversion and will receive the reference wave generated by the 
converter station control, adopting the nearest level modulation 
method to determine the number of sub-module inputs. It then 
sorts each sub-module according to the capacitor voltage based 
on the current direction of the bridge arm (positive or negative) 
that the sub-module with low or high capacitor voltage should 
be charged or discharged to generate the trigger signal of the 
sub-module. This completes the sub-modules’ voltage balance 
control. The converter valve control also needs to collect the 
bridge arm current to complete the suppression of the interphase 
circulating current of the converter. The protection device needs 
to collect the DC-side signals in addition to the above-mentioned 
voltage and current signals to determine whether a protection 
action is triggered when a fault occurs and send the protection 
action signal and breaker trip signal back to the RT-LAB. In 
this way, a closed loop system is formed, which can accurately 
reflect the characteristics of the flexible HVDC transmission 
system and can better test the control and protection device.

C. Data Merge

Because of the large number of sub-modules and the need for 
the digital simulator to send the capacitor voltage and operating 
status of the sub-module to the converter valve control device, 
and to receive the trigger command, RT-LAB has a one-to-one 
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Fig. 2.  System interface device overall structure.
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Fig. 3.  Diagram of hardware-in-the-loop simulation platform hardware connection.
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correspondence with the converter valve control interface. For 
the 300 sub-module capacitance voltages (without considering 
redundancy) of the single converter valve, this is complicated to 
operate. For this reason, the protocol conversion control chassis 
adopts the Aurora communication protocol, which is connected 
the valve base controller (VBC) device with through the Small 
Form-factor Pluggables (SFP) optical fiber module. All of the 
communication optical fibers between the VBC and the MMC 
sub-module digital model need to be connected to the protocol 
conversion control chassis. The protocol conversion control 
chassis assumes the task of connecting the entire simulation 
system. Each fiber interface board has six pairs of fiber interfaces 
and has a one-to-one correspondence with the VBC interface, 
and the structure of the interface board has a similar structure 
to the bridge control board of the VBC. The multimode optical 
fiber serves as a communication medium. The optical transmitter 
uses the HFBR-1414 optical transmitter module and the optical 
receiver uses the HFBR-2412 optical receiver module. A full-
duplex information exchange channel is formed by the VBC and 
each sub-module via two optical fiber lines.

The protocol conversion control box Shown in Fig. 4 is 
responsible for the task of the whole simulation system. The 
standard 6U19 inch cabinet chassis design is adopted, it has 18 
fiber interface cards, 1 main control board, 1 power board, and 
1 back board. As shown in Fig. 5 for a data merge method, the 
real-time simulator OP5607 connects with the SFP light module 
on the FPGA board in the protocol conversion control chassis 
through the ultra-high-speed optical fiber. The communication 
protocol uses Aurora 8 B/10 B, bandwidth 5 GHz. It can be 
connected with the valve control system through FC7161 optical 
signal processing board. The protocol adopts IEC60044-8, which 
realizes the data merge between the multi-channel optical fiber 
data of the converter valve control system and the OP5607 real-
time simulator, thus completing the HIL simulation of the MMC 
system. The design of the high-speed communication interface 
adopts SFP fiber with 2.5 Gbps bandwidth and AURORA 
protocol to complete the communication. The optical signal 
processing board is connected to the valve control system, and 
the data is encapsulated in 8 B/10 B. The data transmission of 8 K 
can be completed in 2 μs. The protocol conversion control chassis 
uses IEC60044-8 protocol to communicate with VBC. The 
interface is set to 32 bits. It takes four microseconds to complete a 
full data transmission. The FPGA uses a 200 MHz clock parallel 
operation. If the 300 sets of data are completely reorganized, it 

needs 2.5 μs which is the data transmission time plus the data 
reorganization time (up to 6.5 μs). In addition to data transmission 
time and data reorganization time, there is also backplane 
transmission delay in the process of data transmission. Each 
optical fiber interface board is responsible for communicating 
with VBC, and the data received by the optical fiber interface 
board needs to be transmitted to the main control board through 
the backplane bus. The backplane uses high-speed LVDS point-
to-point data transmission, and the transmission time of 32 bit 
data is about 6.25 × 10-6 s. Therefore, the backplane transmission 
delay can be ignored in the communication rate calculation. The high-
speed communication interface should be able to complete the 
transmission of 300 sub-module capacitor voltages in 10  μs step.

IV. Design of the Device Test Method

The test of the control and protection device for the flexible 
DC transmission system can be divided into a functional test and 
a dynamic performance test. The purpose of the functional test is 
to verify, optimize and test the overall functions of the complete 
control and protection equipment, including the verification of 
the accuracy of the design of the control and protection software, 
the test of the mutual cooperation between the control and 
protection equipment along with its functions under various 
operating modes as well as the accuracy of the interaction 
between the AC and DC system, and the verification of the 
correctness of sequence control logic and operation procedures.

The dynamic performance test mainly tests the transient 
characteristics of the flexible DC transmission system, checks 
the interaction between the control and protection device and the 
AC/DC system, and selects and verifies the control protection 
parameters. It also optimizes the response of the complete 
control equipment under various operating conditions and checks 
whether the protection configured in each area is reliable. The 
tests for the performance of the control device include sequential 
control, converter charging, open line test, deblock/block test, 
control mode switching, reactive power control, voltage balance 
control, circulation suppression, power lift, power step, DC 
voltage step, etc. In order to verify the reliable operation of the 
protection device, it is necessary to test AC bus fault, valve fault, 
and DC polar fault.

According to the control function of the physical device, 
on the basis of completing the equipment interface signal, 

Fig. 4.  Protocol conversion control box. Fig. 5.  Data merging method.
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the internal communication, and the trigger pulse test, the 
performance test of the converter station control should be 
completed first. After the station control performance is accurate, 
the performance of the converter valve control is verified, and 
the steady performance test is carried out.

The converter station control performance test is divided into 
six tests. 1) The purpose of the converter charging test is to verify 
the accuracy of the valve trigger phase sequence and the control 
protection system phase-locked link. The sub-module charge is 
divided into two processes of uncontrolled rectifier charge and 
controllable charge, in which the controlled charge is completed 
under the control of the constant DC voltage. 2) The open line 
test (OLT) test is the deblocking test for the first active state of 
the converter valve. The purpose is to check whether the control 
system can correctly control the DC voltage and test the insulation 
of the main equipment. In order to ensure that the DC voltage 
does not exceed the maximum limit, simply set the DC voltage 
target value and voltage change rate and monitor the actual value 
of the DC voltage. 3) The sequential deblocking test provides 
insight as to whether the DC bus voltage and the system operation 
is stable after the uncontrolled rectifier charging is completed and 
the charging resistor exits to the end of the inverter deblocking 
process. 4) Control mode switching is when the converter 
station is converted from PQ to PV (or PV switching to PQ). It is 
observed whether the voltage and current waveform are smooth, 
whether there is a large fluctuation, and whether the system can 
maintain stable operation. 5) During the power (voltage) step, it is 
tested whether the system can respond quickly and complete the 
accurate tracking of the target value for the given power (voltage) 
instruction value. 6) STATCOM verifies the performance of the 
static var compensator and checks the current second harmonic 
frequency of the control protection system current.

As the core element in the secondary system of HVDC 
transmission, the converter valve control device is the interface 
device which connects the converter valve and the DC control 
system. It is an important part to control and protect the converter 
valve. Converter valve control is mainly responsible for pulse 
generation, voltage balance control, and circulation suppression.

The converter valve control performance test can be divided 
into three different tests, including voltage balance control, 
circulation suppression, and the protection function. 1) Voltage 
balance control keeps the deviation between the capacitor 
voltage and the calculated value of the sub-module within the 
target value. 2) During the circulating current suppressing test, 
the bridge arm current is monitored, and Fourier decomposition 
is performed to observe the proportion of the secondary harmonic 
negative sequence component. 3) When a fault occurs inside 
the valve or an over-current or over-voltage occurs in the bridge 
arm, the protection function checks the requested trip command 
to see whether it can be sent to the upper computer in time.

Because there are too many test projects mentioned above, 
this paper only designs two test methods to verify the control 
function of the voltage balance control and circulating current 
suppression control in the valve control test. The test flow is 
introduced as follows.

Fig. 6 is a flowchart for the test of voltage balance control. 

When the converter is unlocked, the voltage balance control 
begins to be put in. The capacitance voltage of each module is 
monitored and records the ratio of the maximum deviation value 
of each capacitance voltage to Uc = Udc/N. If the voltage unbalance 
is less than 5%, the effect of voltage sharing control is better.

Fig. 7 shows the circulating current suppression test flow 
chart. It monitors the current of each phase of the bridge arm 
in the converter valve, decomposes the bridge arm current 
by Fourier decomposition, and observes the content of the 
secondary harmonic component. If the circulation component is 
less than 5%, the control effect of the circulation suppression is 
proved to be normal.

V. Simulation Verification

In order to verify the performance and testability of the built 
simulation platform, multiple tests were conducted under steady 
state, dynamic and fault conditions respectively. A two-terminal 
active system with a 51-level MMC-HVDC is running in the 
real-time simulator RT-LAB. The MMC modulates using the 
nearest level modulation. Station 1 adopts the control method 
of constant active power and reactive power; station 2 adopts 

Start

Converter staion deblock

Monitoring capacitance
viltage of submodule

Reaording maximum voltage
deviation between submodules

Voltage imbalance degree＜5%

Divide with Uc = Udc/N

Abnormal Normal

Y

End

N

Fig. 6.  The test flowchart of voltage sharing control.
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the control method of constant DC voltage and reactive power, 
of which, P = -500 MW and Q = 100 MVar. The converter 
transformers connections are connected using YNd. The main 
circuit related parameters are shown in Table I.

This article will mainly analyze the test contents of voltage 
balance control test, circulation suppression test, power step 
test, and AC/DC side fault (converter valve side single-phase 
grounding and DC bipolar short-circuit).

A. Voltage Balance Control Test

 Fig. 8 shows the results of the voltage balance control test 
waveform. As previously mentioned, it can be determined 
that the voltage balance control of the sub-module capacitance 
voltage is performed well after the converter station is deblocked 
and voltage balance control is applied. The voltage fluctuation 
is small, and the maximum deviation of the capacitor voltage 
imbalance is not more than 3%. This is less than the specified 
5%, which verifies that the converter valve control has a normal 
effect on the capacitor voltage balance control.

B. Circulation Suppression Test

In order to verify the suppressing performance of the VBC 
to the interphase circulating current of the bridge arm, the 
circulating current suppression control test is carried out.

Fig. 9 shows the current and circulating current of the upper 
and lower arm of phase A, the waveform of the grid side current 
and the harmonic content. The current has no obvious distortion 
and the waveform quality is better. The secondary harmonic 
content in the bridge arm current is less than 2%, which is far 
below 5%, indicating that the converter valve control has an 

obvious effect on suppressing the phase-to-phase circulation of 
the bridge arm, and the control performance is good.

C.Power Step Test

In order to verify the dynamic performance of the platform, 
the active power test was carried out. Active power is reversed 
from –500 MW to 300 MW at 5 s, and reactive power is 
maintained at 100 Mvar. Fig. 10 shows the waveform of power, 
phase A arm current and capacitance voltage.

According to Fig. 10, the active power step is rapidly 
completed and the tracking is accurate. Reactive power is 
subject to a certain disturbance, but within 0.3 s the fixed value is 
restored. The internal current Iacir of phase A is fluctuated greatly 
during the transition process. It can transit smoothly under the 
action of the circulating current suppressor. The amplitude 
of AC component of arm current Iap and Ian is decreased, and 
there is a more obvious distortion in the transition process. The 
capacitance voltage is fluctuated slightly after reversing, but it 

TABLE I
Parameters of Simulation Test System

AC voltage  230 kV  

AC frequency  50 Hz  
DC voltage ±160 kV 
Converter rated capacity 500 MVA 
Bridge arm inductor  28 mH  
Number of sub-modules  50 
Submodule capacitance  5 mF  
DC capacitance  2 µF  
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can maintain balance under the action of voltage balance control.
The power step test shows that the control effect of the 

converter station control device is stable, the dynamic 
performance of the experimental platform is good, and the 
control targets can respond quickly to the instruction value and 
can be tracked accurately.

D. AC Fault Test

In order to verify the fault test capability of the built platform, 
examine the ability of the control protection system to handle 
the fault, and understand the influence of the fault on the system 
operation, the AC side single-phase to ground fault was carried 
out.

The AC side fault is set to single-phase grounding of the 
phase A valve side. After the system is in stable operation, the 
fault is triggered at t = 3.3 s. The relevant voltage and current 
waveforms are shown in Fig. 11.

When the phase A single-phase to ground fault occurs on the 
valve side, the DC current fluctuates with a small amplitude. 

Fig. 10.  Waveforms of active step power response. (a) Active and reactive 
power. (b) Phase A arm current. (c) Capacitance voltage.
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Although the DC voltage appears similar to the sinusoidal 
fluctuation, the DC voltage can be maintained at 320 kV. The 
three-phase AC current remains basically stable, and the phase 
A voltage drop on the valve side is 0 while the voltage of B 
and C increases to 1.732 times that of the original one. Due to 
the converter blocking, the discharge path between the sub-
module capacitance and the short-circuit point is cut off and 
the AC current is reduced when t = 3.33 s. When t = 3.37 s, 
the protection occurs and the AC circuit breaker trips. Power 
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transmission stops and the AC side can no longer feed current 
to the DC side. Therefore, AC and DC currents both change to 
zero.

E. DC Fault Test

For bipolar short-circuit fault, after the system operates stably, 
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Fig. 12. Waveforms of valve side single-phase to ground fault. (a) AC voltage. 
(b) DC voltage. (c) AC current. (d) DC current.

the fault is triggered at t = 3.35 s, the inverter is blocked after 
25 ms, and the AC circuit breaker trips at t = 3.45 s. The relevant 
waveforms obtained from the simulation are given in Fig. 12.

It can be seen from the results in Fig. 12 that after a fault 
occurs, the capacitance of the submodules in each bridge arm 
rapidly discharges through the short-circuit path on the DC side, 
resulting in the rapid reduction of the DC voltage to 0, and both 
the DC current and the bridge arm current will increase rapidly 
in a short time. With the IGBT blocking, the fault characteristics 
of the AC side are similar to the three-phase short circuit. It can 
be seen that the AC current rises and the AC voltage decreases. 
When AC circuit breaker acts, AC current changes to zero. The 
DC current is also affected by the inverter blocking and the 
circuit breaker tripping. Because of the system blocking, the 
discharge circuit of the bridge arm capacitance is blocked. The 
DC current no longer contains the capacitor discharge current, 
and only the AC side feed current. With the tripping operation of 
the circuit breaker, the AC system does not feed the current to the 
DC side anymore, and the DC current gradually decays to zero.

It can be seen from the results in Fig. 12 that after a fault 
occurs, the capacitance of the sub-modules in each bridge arm 
rapidly discharges through the short-circuit path on the DC side, 
resulting in the rapid reduction of the DC voltage to 0, and both 
the DC current and the bridge arm current will increase rapidly 
in a short time. With the IGBT blocking, the fault characteristics 
of the AC side are similar to the three-phase short circuit. It can 
be seen that the AC current rises and the AC voltage decreases. 
When AC circuit breaker acts, AC current changes to zero. The 
DC current is also affected by the inverter blocking and the circuit 
breaker tripping. Because of the system blocking, the discharge 
circuit of the bridge arm capacitance is blocked. The DC current 
no longer contains the capacitor discharge current, and only the 
AC side feeds current. With the tripping operation of the circuit 
breaker, the AC system does not feed the current to the DC side 
anymore, and the DC current gradually decays to zero.

VI. Conclusion

In this paper, an HIL platform based on RT-LAB for MMC 
system of two-terminal is built, which has favorable steady-state 
and dynamic performance. A data merging method between the 
converter valve control system and the real-time simulator is 
designed to meet the requirements of communication speed. The 
test methods of voltage balance control and circulating current 
suppressing control are proposed. A series of dynamic and fault 
tests are carried out according to the performance indexes of 
control and protection devices. The tests show that the proposed 
test scheme is reasonable and can meet the requirements of 
the control and protection system test, which can provide an 
effective means for the study of control strategies. It has certain 
practical significance for the test of the control and protection 
device in the flexible DC project and can reduce on-site 
debugging process and meet its requirements.
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Prediction Method of DC Bias in DC-DC 
Dual-Active-Bridge Converter

Liangcai Shu, Wu Chen, and Zhanfei Song

Abstract—The dual-active-bridge (DAB) converter attracts 
more and more attentions due to its ability of bidirectional power 
transmission and high conversion efficiency. The adoption of high-
frequency transformer provides galvanic isolation, but also brings 
the possibility of dc bias. In this paper, the causes of dc bias have 
been analyzed and relevant calculation methods are derived in 
details. With the calculation methods, the dc bias magnetizing 
current can be predicted considering the inconsistency of 
semiconductor switches and driver signals. In other words, if the 
maximum permitted dc bias of the transformer is given, the range 
of the inconsistency of semiconductor switches and driver signals 
can be obtained which helps guide the selection of semiconductor 
devices and design of the transformer. Therefore, extra flux 
balancing method can be avoided and the overall cost and volume 
will be further reduced. Additionally, simulation and experimental 
results show great agreement with the theoretical analysis.

Index Terms—DC bias, dual-active-bridge converter, prediction 
method.

 I. Introduction

THE dual-active-bridge (DAB) converter has been widely 
adopted in the applications for bidirectional power 

transmission, such as energy storage system [1]. It comprises 
two active H-bridges and one high-frequency transformer to 
achieve large voltage transfer ratio and galvanic isolation. At 
present, the work mainly focuses on the control strategies of the 
DAB converter. The representative control methods including 
single-phase shift (SPS), dual-phase-shift (DPS) and triple-
phase-shift (TPS) control [2]−[8], aiming to reduce current 
stress, widen power transmission range and improve conversion 
efficiency, especially the latter two control strategies. On the 
other hand, due to the adoption of high-frequency transformer, 
the dc bias of the transformer needs to be tackled, which can 
be classified into transient dc bias and steady dc bias. For the 
transient dc bias which always occurs with the abrupt change 
of phase-shift angle or input/output voltages, various transient 
phase shift control strategies are proposed to eliminate the 
phenomenon [9], [10]. For the steady dc bias, the dc excitation 
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to the transformer can be caused by non-ideal behavior of the 
system components, including unmatched turn-on/turn-off 
times, gate driving signal delays and inconsistency between the 
parameters of semiconductor devices [11].

In order to eliminate the dc bias of the transformer, various 
flux measuring and balancing methods have been proposed 
[11]−[18]. The flux balancing method mainly includes two 
types: passive balancing and active control. A blocking 
capacitor connected in series with the winding of the 
transformer or an air-gap inserted into the core’s magnetic 
path are the main passive balancing methods to eliminate 
or alleviate the dc bias of the transformer [12], [13], in 
which no extra control strategy or monitoring devices are 
needed. However, the blocking capacitor can result in a low-
frequency oscillation in response to variations in switching 
modes, and cause excessive low-frequency EMI [12]. 
Moreover, this approach can increase the power loss and 
the volume. Additionally, the air-gap does not eliminate the 
dc flux component. Hence, the active flux control methods 
were proposed [11], [14]−[18]. In order to control the 
dc magnetization of the core, the flux must be measured 
dynamically, and the flux measuring methods can be mainly 
classified into flux measurement and current measurement. For 
the flux measuring methods, extra processing or components 
such as magnetic ear [11], a slot in the core legs [14], air-
gap in the magnetic flux [15], specific type of magnetic core 
[16], or special sensors are needed to dynamically detect the 
variation of the flux. For the current measuring methods, 
the primary and secondary winding currents are sampled to 
monitor the variation of the magnetizing current [17], [18]. 
Almost all the measuring methods require high sampling 
rate and precision, and analog-to-digital converters are even 
needed [17], [18], which increases the complexity and the 
overall cost.

With the development of the semiconductor devices 
manufacturing, the consistency between switches can be 
guaranteed within certain range. As long as the inconsistency 
of switches and driving circuits is smaller than certain 
limitation, the dc bias in the high-frequency transformer can 
be tolerated. Hence, one calculation method of the dc bias 
magnetizing current seems necessary, which can also be 
used to predict the required range of inconsistency with the 
maximum permitted dc bias magnetizing current given. This 
can guide the selection of semiconductor devices and the 
design of transformer, so that extra flux balancing methods 
can be avoided. One calculation method of the dc bias 
magnetizing current is proposed in [19] for the zero-voltage- 
switching (ZVS) converters with the consideration of the 
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parasitic capacitors in parallel with the switches. However, 
the calculation equation proposed in [19] is somewhat 
idealized to calculate the dc bias caused by the inconsistency 
of devices due to the neglect of on-resistance of the switches 
and windings. Hence, there is few methods to calculate 
the maximum dc bias magnetizing current considering the 
inconsistency of switches and driving circuits.

Considering the inconsistency of switches and driving 
circuits in practical circuit, a novel method of predicting the 
maximum dc bias magnetizing current of the DAB converter 
is proposed in this paper. The DAB converters with IGBTs and 
MOSFETs are analyzed separatly in the paper for the DAB 
converters with different semiconductor devices have different 
current paths in some switching modes. The equivalent 
models are built in Section II firstly and the generation of dc 
bias is analyzed in Section III. Then, the prediction method is 
derived in Section IV and examples are given to introduce the 
predicting procedure in Section V. Experiments are also made 
to verify the theoretical analysis in Section VI and conclusions 
are made in Section VII.

II. Equivalent Model of DAB Converter With IGBTs 
and MOSFETs

In this section, equivalent models of the DAB converters 
employing IGBTs and MOSFETs are built to conduct 
the derivation of dc bias magnetizing current. A typical 
configuration of the DAB converter is shown in Fig. 1. The 
inductor Lr is the leakage inductor of the transformer Tr or the 
summation of the leakage inductor and an external inductor. Lm 

is the magnetizing inductor of Tr. The turns ratio of Tr is N:1, 
and the primary and secondary winding resistances are set as rp 

and rs, respectively. The anti-paralleled diodes or body diodes of 
Q1 ~ Q8 are denoted as D1 ~ D8. In order to simplify the analysis, 
the transient turn-on or turn-off processes of the switches are 
neglected.

Because the specific derivation of magnetic flux density 
dc component Bdc is affected by the employment of IGBTs 
or MOSFETs, the two situations are analyzed separately here 
and the equivalent models are built in Fig. 2. For IGBTs and 
diodes, it is assumed that the on-state voltage VCE and forward 
voltage drop VF are constant, while for MOSFETs, their on-
state resistances RON are assumed to keep constant. Hence, 
the parameters in Fig. 2 possess different meanings in IGBTs 
and MOSFETs applications, which is shown in Table I. For 
the voltages across Q1 ~ Q8 and D1 ~ D8 have been represented 
as the parameters Rp/Rs and vdp/vds, vAB and vCD in Fig. 2 can 

be seen as the voltage across A and B (C and D) of the DAB 
converter employing ideal switches. Hence, vAB and vCD are only 
affected by the voltages V1 and V2, the on/off states of Q1 ~ Q8 
and D1 ~ D8.

III. Analysis of the Generation of DC Bias

As aforementioned, various factors can cause the magnetic 
flux density dc component Bdc, which can be classified into 
two types: unmatched turn-on/off times and the inconsistency 
between the devices. The unmatched turn-on/off times are 
usually caused by duty cycle loss, gate driving signal delay and 
so on, while the inconsistency refers to the difference between 
the on-state resistances or forward voltages of devices caused 
by differences in connection types, heat dissipation or device 
manufacturing.

A.  Unmatched Turn-on-off Times

When the power is transmitted from V1 to V2 and no dc bias 
occurs, the typical waveforms of the DAB converter with SPS 
control strategy are shown in Fig. 3, in which the phase-shift 
time is tφ and the dead time is td. And the specific ON switches 
in each mode are given in Table II. When discussing the effect 
of unmatched turn-on/off times, parameters of the switches are 
assumed to be consistent.

For the DAB converters with IGBTs, current ip flows 
through the anti-paralleled diodes of Q1 and Q4 during the 
time interval [t0, t2]. Whenever Q1 and Q4 areturned on, as 
long as it is later than t0 and earlier than t2, operating state of 
the converter will not be affected. Hence, the inconsistent 
time when Q1~Q8 are turned on will not cause dc bias. 

TABLE I
Specific Explanations of Parameters in Fig. 2
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Fig. 1.  Typical topology of the DAB converter.
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Fig. 2.  Equivalent model of the DAB converter.

 IGBTs Applications MOSFETs Applications 

Rp/Rs 0 
Summation of resistance of 

 on-state MOSFETs 
(RpM/ RsM) 

vdp/vds 

Summation of forward 
voltages across ON switches 
or diodes on primary and 

secondary sides (vdpI/ vdsI) 

Summation of the voltage 
drops across conducted diodes 
on primary and secondary 

sides (vdpM/ vdsM) 

vAB/vCD 
Voltage across points A and B (C and D) of the DAB

converter employing ideal switches in Fig. 1 

rp/rs Resistance of primary/secondary windings 
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However, when MOSFETs are adopted as switches, current 
ip flows through D1 and D4 during the dead zone [t0, t1], and 
flows through the MOSFET channel as soon as Q1 and Q4 
are turned on. So unmatched turn-on times will introduce 
an extra mode. Assuming that Q1 is early turned on, current 
ip will flow through D1 and Q4 before Q1 is turned on. For 
the voltage drops of the body diodes and the voltages across 
the MOSFETs are different, the voltage across Lr changes 
and the variation of ip in two half switching cycle can be 
unbalanced. Thus, the dc bias of ip is generated. Moreover, 
duration of this extra mode is so short that the effect of 
inconsistent voltage across devices is limited and the dc bias 
of ip will be small, which will be analyzed with mathematic 
derivation in the next section. For the secondary side of the 
DAB converter, the switching modes are not affected and no 
dc bias is generated, which will also be verified in the next 
section.

When the switches are early turned off or the turn-off time 
is delayed, the operating state will change and the dc bias will 
be generated in both IGBTs and MOSFETs applications. The 
situation where Q2 is turned off earlier than the expected time is 
taken as an example to introduce how the dc bias is generated. 
As shown in Fig. 4, when Q2 is early turned off, ip increases 
before the expected time t0. The variation of ip during [t0, t3] 
becomes larger than that during [t5, t8], resulting in the positive 
dc bias of ip. At the same time, the positive dc bias of ip causes 
a positive voltage across the resistances rp and RpM, which can 
counteract the extra variation of vLr

 during [t0, t3] and reduce 
the increment of the dc bias of ip. Similarly, the secondary side 
of the DAB converter is not affected either. Finally, the steady 
operating state under positive dc bias is achieved.

B.  Inconsistency of the Devices

For the DAB converters with IGBTs, it is assumed that the 

voltage drop across anti-paralleled diode D1 is smaller than that of 
other switches. When D1 conducts, the voltage across Lr will 
reduce. So the amplitude of the volt-seconds across Lr during 
[t0, t2] will become smaller than that during [t5, t7], resulting 
in the variation of ip during [t0, t2] to be smaller than that 
during [t5, t7]. Hence, the negative dc bias of ip is generated. 
Similarly, the negative dc bias of ip causes a negative voltage 
across the resistance rp, which can compensate the loss of 
vLr

 during [t0, t2] and reduce the decrement of the dc bias of 
ip. However, the operating state of the secondary side is not 
affected. Hence, the final steady state under negative dc bias can 
be obtained. In addition, the similar analysis can be applied to 
the DAB converters employing MOSFETs.

IV.  Derivation of DC Bias Magnetizing Current

The derivation of dc bias magnetizing current depends on 
the type of selected switches, so this section is divided into 
two parts to introduce the calculation method for IGBTs and 
MOSFETs, respectively. Before the derivation, following 
assumptions are made to simplify the derivation. 

1) The DAB converter is controlled with SPS strategy;
2) The capacitors C1 and C2 are large enough to keep V1  

and V2 stable, which satisfies V1 = NV2;
3) The capacity of Tr is large enough to tolerate the 

magnetic flux density dc component Bdc and its 
magnetizing inductance keeps constant.

A.  IGBTs Applications

Considering the forward voltages across the switches and 
primary/secondary winding resistances of the transformer, 
the voltage across Lm can be calculated with (1). When 
inconsistency occurs, vLm

 will deviate from the expected 
value, causing unexpected variation of ip and dc bias.

(1)

Fig. 3.  The typical waveforms of the DAB converter with SPS control.

Fig. 4.  The waveforms of the DAB converter when Q2 is early turned off.
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To calculate the dc part of the primary current, periodic 
time integrals are made for (1), and (2) is obtained. The 
periodic time integral of vLm

 keeps at zero when the converter 
reaches steady state with certain dc bias, otherwise the 
average value of magnetizing current will continue to 
change. Similarly, the third item of the right side of (2) is 
also zero when the converter reaches steady state.

(2)

where T is the switching cycle. ΔλABI refers to the volt-
seconds across points A and B in one switching cycle. As 
aforementioned, for IGBTs applications, the unmatched turn-
on times has no influence on the volt-seconds ΔλABI, while 
the unmatched turn-off times will affect ΔλABI directly. For 
example, when Q2/Q3 are early turned off, ΔλABI will increase 
over zero, on the contrary, when the turn-off times of Q2/Q3 

are delayed, ΔλABI will fall below zero.
From Table II, one switching cycle contains four modes, 

so (3) can be obtained as

(3)

where dcpI is the average current of ip, namely, the dc part of 
ip. vdpjI ( j = 1, 2, 3, 4) are shown as (4), in which vQ j and vDj 

(j = 1, 2, 3, 4) refer to the voltage drops across the switch Qj 
and the anti-paralleled diode Dj, respectively. τjI (j = 1, 2, 3, 4) 
are the time intervals of the respective modes MpjI, which are 
shown as (5). Some approximate treatments are made here 
to simplify the derivation procedure, including neglecting 
the effect of rp on the duration τjI of each mode and ignoring 

the extra short mode introduced by the unmatched turn-off 
times.

(4)

(5)

Then, with (3), (4) and (5), one can be derived as (6).

(6)

It should be emphasized that the amplitude of dcpI cannot 
be too large, otherwise ip will be larger or smaller than 
zero in the whole switching cycle, causing (4) and (5) to 
fail. Moreover, (3)−(6) work only when the current ip is 
continuous. Hence, it is required that the time intervals of 
Mp1I/Mp3I and Ms2I/Ms4I must be larger than the dead time. 
And the boundary condition of (6) should be checked up 
after calculation. 

Similarly, the dc part of is can be calculated with (7).

(7)

where ΔλCDI refers to the volt-seconds across points C 
and D in one switching cycle. For instance, when Q5/Q8 
are early turned off, ΔλCDI will reduce below zero. On the 
contrary, when the turn-off times of Q5/Q8 are delayed, 
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TABLE II
On-State List of Each Switch During a Switching Cycle

 snoitacilppA sTEFSOM snoitacilppA sTBGIItem 

Time ModePjI  H-bridge 1 ModeSjI  H-bridge 2 ModePjM  H-bridge 1 ModeSjM  H-bridge 2

MP1I MS1I Q t1~t2/t2 D1/D4 D6/D7 Q1/Q4 6/Q7 MS1M 

 Mt3~t4 Q1/Q4 D5/D8 Q1/Q4 S2M D5/D8 MP2I 
MP2M 

t4~t5 Q1/Q4 D5/D8 Q1/Q4 Q 5/Q8
 

   Mt5~t6 D2/D3 D5/D8 P3M D2/D3 Q 5/Q8 MP3I 
MS3I MS3M 

 
t8~t9 Q2/Q3 D6/D7 Q2/Q3 MS4M D6/D7 MP4I MS1I

 MP4M 

t9~t10 Q2/Q3 D6/D7 Q2/Q3 MS1M Q6/Q7  

t0~t1 D1/D4 D6/D7 MP1M D1/D4 Q6/Q7 

t2/t2 ~t3 Q1/Q4 MS2I Q6/Q7 Q1/Q4 Q6/Q7 

t6~t7/t7 D2/D3 D5/D8 Q2/Q3 Q 5/Q8 
t7/t7 ~t8 Q2/Q3 MS4I Q5/Q8 Q2/Q3 Q5/Q8 
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ΔλABI will increase over zero.vdsiI (i = 1, 2, 3, 4) are shown as 
(8), in which vQ j and vDj ( j = 5, 6, 7, 8) refer to the voltage 
drops across the switch Qj and the anti-paralleled diode Dj, 
respectively.

(8)

With (6) and (7), the magnetic flux density dc component 
Bdc can be calculated with

(9)

where μ0 is the permeability of vacuum, and μr is the relative 
permeability, Ae is the effective cross-sectional area, and lm is 
the length of flux path.

With (6), (7) and(9), it is found that both dcpI and 
dcsI are only affected by the factors on their respective 

sides, including volt-seconds, winding resistance of the 
transformer and the voltage drops across devices. But 
they collaborate to result in the dc bias of the transformer. 
For the methods which detect the transformer directly 
and produce reverse excitation to counteract the dc 
bias, the magnetic flux density dc component Bdc can 
be eliminated. However, dcpI and dcsI still exist, which 
can cause uneven conduction and switching loss among 
switches and further result in inconsistent aging degree 
of the semiconductor devices. This may aggravate the 
inconsistency among devices and increase the dc bias of 
both sides in turn. With these methods [11], [14]−[18], 
the position (primary or secondary side or both sides) 
where the dc bias occurs cannot be ascertained, making 
it hard to eliminate the possible dc bias of ip and is. From 
this perspective, detecting the dc parts of ip and is and 
regulating the duty cycles of switches at the side where 
dc bias occurs seems to be a better choice to avoid this 
potential ill effect.

B.  MOSFETs Applications

For MOSFETs applications, (2) is still workable. Assuming 
that the on-state resistance of MOSFETs and voltage drops 
across body diodes are constant, (10) can be obtained 
according to Table II. 

With (10), the reason why unmatched turn-on times 
only cause small dc bias in the MOSFETs applications 
(mentioned in Section III) can be easily obtained. When 
the turn-on time of switches are early or delayed, current 

ip can flow through the body diodes and the operating state 
keeps unchanged. For example, in Fig. 3, as long as the 
turn-on time of Q1 is later than t0 and earlier than t2, ΔλABM 
will keep unchanged, because it has been mentioned in 
Section II that vAB is only affected by the voltages V1 and 
V2, the on/off states of Q1-Q8 and D1-D8. However, due to 
the difference between the voltage drops of body diodes 
and the voltages across MOSFETs channel, the first item 
on the left side varies, which results in the dc bias of ip. 
But this duration is too short, so the dc bias of ip will be 
small.

(10)

One switching cycle contains four modes according to the 
on-state devices, and the expressions of vdp1M, Rp2M, vdp3M and 
Rp4M are shown as (11).

(11)

By neglecting the variation of ip during [t3, t5] and [t8, t10] and 
ignoring the extra short modes introduced by the unmatched 
turn-off times, the integrals of ip during [t1, t5] and [t6, t10] can 
be calculated as (12).

(12)

where k is the rate of rise of ip during [t0, t4], namely, 
(V1+NV2)/Lr.

Therefore, dcpM can be calculated as (13). Similarly, dcsM 

can also be obtained as (14), with the expressions of Rs1M, 
vds2M, Rs3M and vds4M shown as (15).
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(15)

Then, similar to (9), the dc magnetizing current can 
be calculated with (13) and (14). Similar to the IGBTs 
applications, the dc magnetizing current is caused by the dc 
bias on both primary and secondary sides, and the dc bias 
on primary and secondary sides has no effect on each other. 
Hence, it is also recommended that dc bias currents dcpM and  

dcsM should be treated separately.

C.  Analysis for Discontinuous Current Mode (DCM)

The aforementioned analysis of dc bias magnetizing 
current is based on the condition that ip and is are continuous, 
while for the discontinuous current mode (DCM) some 
conclusions changes. As shown in Fig. 5, when the power is 
transferred from V1 to V2, the phase-shift angle is too small to 
keep ip continuous. But due to the magnetizing current im, is 
can be kept continuous. When Q3 is early turned off, an extra 
operating mode will be introduced, and the volt-seconds 
ΔλAB can be calculated as (16).

(16)

For that the current ip keeps almost unchanged during the 
durations [t1, t3] and [t6, t8], ip(t3) is considered to be very 
close to – ip(t8 ) and ΔλAB is very close to zero. Hence, the 
dc bias will be very tiny in this situation. However, since 

that is is still continuous, unmatched turn-off time of the 
switches still causes obvious dc bias. Although the shape of 
is varies, the dc bias current can still be predicted with (6), 
(7), (13) and (14) since that the time intervals of [t4, t5] and 
[t9, t10] are very short. Similarly, the inconsistency of devices 
at the primary side just results in very small dc bias, while 
the inconsistency of devices at the secondary side can cause 
large dc bias, which can be predicted with (6), (7), (13) and 
(14). Furthermore, when the phase-shift time is smaller 
than the dead zone, the transmission power will be zero if 
V1 = NV2, and no dc bias will be generated.

The aforementioned analysis can be generalized as follow:
1) When the phase shift angle is small, the winding 

current of leading bridge will be discontinuous, while 
the winding current on lagging side keeps being 
continuous due to the magnetizing current;

2) Unmatched turn-on and turn-off time and inconsistency 
of devices in leading bridge only result in very tiny dc 
bias, which can hardly be measured;

3) Unmatched turn-on and turn-off time and inconsistency 
of devices in lagging bridge results in obvious dc bias, 
which can be calculated with (6), (7), (13) and (14);

4) When the phase-shift time reduces smaller than dead 
zone, no dc bias will be generated if V1 = NV2.

  
D.  Analysis for V1 ≠ NV2

Considering the situation V1 ≠ NV2, ip and is will vary 
obviously during the time intervals [t1, t3] and [t6, t8]. But as 
long as the difference between V1 and NV2 is not very large, 
(6), (7), (13) and (14) still work. But if V1 and NV2 mismatch 
seriously, ip and is will cross zero during [t1, t3] and [t6, t8], and 
operating stage will change, so that the prediction accuracy 
of dc bias will decrease. Additionally, when V1 ≠ NV2, the 
transmission power is not zero even if the phase-shift time 
is smaller than the dead zone, so that the unmatched turn-
on/off times and inconsistency of devices will still result in 
dc bias. However, for the operating states in such situation 
and normal situation are totally different, the accuracy of the 
aforementioned expressions will decrease a lot.

E.  Generalization

With the aforementioned analysis, for the DAB converters, 
the dc components of primary and secondary current are 
only affected by the factors on their respective sides, and 
they collaborate to cause the dc part of magnetizing current. 
Hence, the aforementioned calculation methods can be 
generalized to the multi-active-bridge converter, which is 
shown in Fig. 6. With (2), similar derivation procedure can 
be applied to calculate integrals and the dc part dci (i = 1, 
2, …, N) of current through each winding can be obtained. 
Hence, by reflecting dci to the 1# side uniformly, the dc 
magnetizing current can be expressed as the summation of 
the reflected dc current.
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Fig. 5.  The waveforms of the DAB converter when Q3 is early turned off and ip 

is discontinuous.
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V. The Prediction Method of the DC Bias

In order to obtain the maximum permitted inconsistency 
of devices and drivers, an example is taken here to introduce 
the detailed calculation procedure. The parameters are 
shown in Table III. Moreover, the maximum inconsistency 
of forward voltage or on-state resistance is set as ±5%.

The maximum unmatched turn-on/off time is set as 10 
ns. Hence, considering that only one switch on primary 
side turns off 10 ns earlier or later than the expected time, 
ΔλAB can reach the maximum value (7.5 × 10-6 Vs) or the 
minimum value (–7.5 × 10-6 Vs).

For IGBTs applications, if ΔλABI is fixed at 7.5×10-6 Vs and 
φ is set as 50°, the curves of dcpI versus vdp1I ~ vdp4I are shown 
in Fig. 7(a), in which each layer of curve represents a set of 
vdp2I and vdp4I. The curves surrounded by dash dot lines and 
solid lines represent the data with vdp2I fixed at 3.23 V and 
3.57 V, respectively. It can be noted that dcpI increases with 
the decrease of vdp1I ~ vdp4I. The range of dcpI versus the phase-
shift angle φ is shown in Fig. 7(b). As aforementioned, if 
V1 = NV2, the dc bias will decrease to zero when the phase-
shift time is shorter than the dead time. The dead time 
is set as 1μs, so that when φ is smaller than 3.6°, the dc 
bias will be zero. And noticeably, the situation that V1 and 
V2 mismatch is not considered here. The range of dcpI is 
given as the gray area, which is slightly broadened with the 
increase of φ. When φ increases to 50°, the maximum and 
minimum values can reach 2.105 A and –2.105 A, with the 
maximum inconsistency limited within ±5%.

For MOSFETs applications, the curves of dcpM versus Rp2M 
and Rp4M is shown in Fig. 8(a). Because the time intervals 
of modes Mp1M and Mp3M are very short, vdp1M and vdp3M have 
little effect on dcpM. Hence, they are fixed at 6.6 V here to 
simplify the analysis. In Fig. 8(a), dcpM increases with the 
decrease of Rp2M and increase of Rp4M. And dcpM increases 
along with φ according to Fig. 8(b). The maximum and 
minimum values can reach 1.269 A and –1.269 A with φ 
increasing to 50°.

It can be found that the rate of rise of the maximum 
value of dcpI is smaller than dcpM. For the DAB converters 
employing MOSFETs, the differences between the on–

Fig. 6.  The topology of multi-active-bridge converter.
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state resistance of MOSFETs are confirmed once the type 
and maximum inconsistency of MOSFETs are given. 
With the increase of phase shift-angle φ, the maximum 
value of ip increases, which causes differences between the 
voltages across inconsistent MOSFETs to be magnified. 
Hence, the maximum of dcpM increases rapidly. From 
another perspective, the item of numerator in (13), namely, 
–2tφ

2+tφ(T+td)–2td
2 is positive and is proportional to the 

square of tφ. When Rp2M is smaller than Rp4M, the third item 
of numerator in (13) is proportional to the square of tφ, while 
the denominator keeps unchanged, resulting in the quadratic 
increase of the maximum of dcpM. However, for the DAB 
converters with IGBTs, the forward voltages of IGBTs and 
voltage drops of anti-paralleled diodes are assumed to be 
constant. Once the type of IGBTs is selected, the differences 
between the voltage across switches are determined, which 
do not vary with the increase of φ. Hence, according to (6), 
it can be found that the maximum of dcpI increases linearly 

along with φ. Actually, the rate of rise of the maximum value 
of dcpI and dcpM depends on the parameters of semiconductor 
switches and the given maximum inconsistency.

For some approximate treatments are made to simplify the 
derivation, the PLECS software is employed to verify the afore-
mentioned results. For IGBTs applications, the error between 
simulation and calculation results is always smaller than 0.02 
A with the given conditions, which is shown in Fig. 9(a). For 
MOSFETs applications, the comparison between simulation 
and calculation results is shown in Fig. 9(b), in which the 
error keeps being smaller than 0.02A. Hence, it can be 
concluded that the accuracy of aforementioned equations can 
be guaranteed.

VI. Experimental Analysis

In order to verify the aforementioned analysis, an experi 
mental prototype was built with the parameters given in Table IV. 

R p2M /m Ω R p 4M /m Ω

I dc
pM

  (
A

)

           

1.5

1

0.5

0

0.5

1

1.5

0              10              20              30              40              50
 (°)φ

3.6

I dc
pM

 (A
)

(50, 1.269)

(50, 1.269)

       ΔλABM = 7.5 10-6 Vs
vdp1M = 6.93 V  Rdp2M =  62.7 mΩ
vdp3M =  6.27 V    Rdp4M =  69.3 mΩ

       ΔλABM= 7.5 10-6 Vs
vdp1M = 6.27 V  Rdp2M =  69.3 mΩ
vdp3M =  6.93 V    Rdp4M =  62.7 mΩ

(a)

(b) 

3.2 3.3 3.4 3.5 3.6
1

0.5

0

0.5

1

1.5

2

v dp2I  (V)

vdp4I = –3.23 V

vdp4I = –3.4 V

vdp4I = –3.57 V

Simulation results
Calculation results

62 64 66 68 70
0.4

0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Rp2M (mΩ)

Rp4M = 66 mΩ

Rp4M = 69.3 m Ω

Rp4M = 62.7 m Ω

Simulation results
Calculation results

(a)

(b) 

I dc
pM

 (A
)

I dc
pM

 (A
)

Fig. 8.  The curves of dcpM. (a) Versus Rdp1M and Rdp4M. (b) Versus phase-shift 
angle φ.

Fig. 9.  The comparison between simulation and calculation results for 
(a) IGBTs applications. (b) MOSFETs applications.
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Fig. 10.  The main waveforms of the DAB converters employing IGBTs. 
(a) Unmatched turn-on times. (b) Unmatched turn-off times.

Fig. 12.  The main waveforms of the DAB converters employing MOSFETs 
with different Rp2M.

Fig. 11.  The main waveforms of the DAB converters employing MOSFETs. 
(a) unmatched turn-on times. (b) unmatched turn-off times.

The experimental results are shown in Figs. 10–12.
The waveforms of the DAB converter with IGBTs are 

given in Fig. 10. When the turn-on and turn-off times of Q1 
are not early or delayed, the currents through the primary 
and secondary wingdings of the transformer are shown as 
ip0 and is0, respectively. When Q1 is turned on 500 ns later 
than the expected time as shown in Fig. 10(a), the primary 
and secondary currents are shown as ip and is, which keep 
unchanged comparing to ip0 and is0. However, when Q1 
is set to be turned off 150 ns earlier than the expected 
time as shown in Fig. 10(b), the dc part of ip decreases 
obviously while is keeps unchanged, which agrees with the 
aforementioned analysis.

The waveforms of the DAB converter with MOSFETs are 
shown in Fig. 11. Similarly, ip0 and is0 refer to the original 
currents through the primary and secondary windings, 
respectively. When Q1 is turned on 500ns later than the 
expected time as shown in Fig. 11(a), the primary and 
secondary currents are shown as ip and is. The dc bias in ip 

is affected slightly and the dc bias in is keeps unchanged. As 
mentioned in Section III, even though the turn-on time of 
Q1 is delayed, ip can still flow through its body diode during 
this mode. Hence, the only difference introduced by the 
unmatched turn-on time of Q1 is the change of the voltage 
across Q1 in this duration. Also because this duration is too 
short, the effect on the dc part of ip is hardly observed. When 
Q1 is turned off 150 ns earlier than the expected time, the 
dc part of ip decreases obviously comparing to the initial 
situation, which is shown as Fig. 11(b). However, the dc part 
of is keeps unchanged for no change is put the secondary 
side. It can also be noted that there is an initial dc bias in the 
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converte r due to the inconsistency of devices.
In order to verify the relation between dcpM and Rp2M, a 

small resistor is connected in series with Q1. By changing the 
resistance from 0 to 30 mΩ, and 60 mΩ, it can be noted that 
the dc part of ip reduces gradually as in Fig. 12. As the duration 
of Mp1M is so short that the effect of the extra resistor on vdp1M 
can be neglected, it can be concluded that dcpM decreases with 
the increase of Rp2M, which agrees with Fig. 8(a).

VII. Conclusion

In this paper, dc bias in the DAB converters with SPS 
control has been analyzed, and one prediction method of 
dc bias magnetizing current is proposed considering the 
inconsistency of switches and driving circuits, which can 
also be generalized to the multi-active-bridge converters. 
Some conclusions can be made here:

1) For IGBTs applications, unmatched turn-on times has 
no effect on the dc bias, while unmatched turn-off 
times will cause an obvious dc bias;

2) For MOSFETs applications, unmatched turn-on 
times has a very slight influence on the dc bias, while 
unmatched turn-off can introduce an obvious dc bias;

3) Unbalanced factors can only affect the dc bias current 
on the respective side, while they collaborate to create 
a dc flux density component in the transformer core.

With the prediction method, if the maximum permitted dc 
bias of the transformer is given, the range of the inconsistency 
of semiconductor switches and driver signals can be 
obtained, which is helpful for the selection of semiconductor 
devices and the design of the transformer. Hence, extra flux 
measurement and balancing methods can also be avoided.
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Improved Quasi-Y-Source DC-DC Converter for 
Renewable Energy

Xupeng Fang, Xiaokang Ding, Shixiang Zhong, and Yingying Tian

Abstract—In order to improve the performance of dc-dc converter 
circuit in renewable energy power generation system, and 
overcome the problems of input current discontinuity and high 
inrush current in traditional Y-source converter, an improved 
Y-source dc-dc boost converter topology is presented in this 
paper. The voltage gain formula is derived by analyzing the 
topology and operating principle of the converter circuit. The 
proposed circuit topology inherits all the benefits of the existing 
Y-source converter and has several more advantages, including 
the higher voltage gain, continuous input current and small 
inrush current. The simulation and the experiments based on the 
prototype are performed. And the simulation and experimental 
results verify the rationality and superiority of the circuit topology.

Index Terms—Boost converter, dc-dc converter, improved quasi-
Y-source converter, renewable energy.

I. Introduction

THE rapid development of the human society and 
the industrial production causes increasing energy 

consumption, and thus the reserved non-renewable energy 
declines rapidly, especially for the fossil fuels, has led to a 
growing supply shortage. At present, renewable energy has 
become a hot spot for many researchers because of its clean 
and sustainable development. For new energy generation, 
such as photovoltaic, wind power and fuel cell power 
generation, there are disadvantages of low output voltage. 
Therefore, it is necessary to increase the output voltage to a 
higher dc voltage by a high voltage gain dc-dc converter.

Although the traditional boost converter has the char-
acteristics of simplicity, high conversion efficiency, due to the 
low voltage gain, its application in renewable energy systems 
is limited. This is caused by the following reasons: the 
conventional boost converter can only obtain a higher output 
voltage by increasing the duty cycle, which also causes the 
current peaks of the output diode and the controllable power 
switch to increase. This will lead to a large conduction loss 
of the diode and the power switch and an increase of the 
voltage stress of the capacitor, which reduces the conversion 
efficiency and the service life of the circuit. The high-boost 
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gain converters were proposed with the switched inductor 
unit in [1] and the voltage multiplication unit in [2]. They 
were designed to increase the voltage gain and the higher 
the voltage gain need to be obtained, the more cascaded 
units should be used theoretically. But it increases the cost 
and complexity of the circuit and affects its conversion 
efficiency. Prof. F. Z. Peng proposed Z-source inverter 
topology to overcome the problems of the traditional 
inverter in 2002 [3]. Subsequently, a quasi-Z-source inverter 
topology was presented in [4], which reduces the voltage 
stress of the passive components in the impedance source 
network and makes the input current continuous compared 
to the conventional Z-source inverter. Furthermore, the 
Z-source network can also be applied to dc-dc converters, 
which also have excellent characteristics [5]. From then on, 
the Z-source and quasi-Z-source concept have been widely 
applied in lots of areas such as electric vehicles, photovoltaic 
generation, and wind power generation, etc.

In order to further increase the voltage gain of the 
Z-source-based converters, many scholars have applied 
coupled inductors in impedance source network in recent 
years[6], [7]. Many new high voltage gain topologies are 
proposed: high frequency transformer isolated Z-source 
inverter [8], TZ-source inverter [9], trans-Z-source 
inverter[10], [11], Γ-source inverter [12], a family of T-source 
networks [13], [14], Y-source inverter [15], [16] and quasi-Y-
source inverter [17], [18]. It is worth noting that the Y-source 
inverter uses a three-winding transformer to flexibly adjust 
its voltage gain, and compared with other converters, it can 
achieve higher boost gain with the same shoot-through duty 
cycle. The Y-source converter concept could be extended to 
dc-dc conversion, and the Y-source dc-dc converter topology 
is shown in Fig. 1. Similar to the Z-source converter, the 
operating mode of the Y-source converter can also be 
divided into two states: the shoot-through state and the non-
shoot-through state.

The capacitor voltage stress in the Y-source converter is 
known from [12]:

        (1)

Where D is defined as the duty cycle of the controllable 
power switch and N1, N2 and N3 are the winding turns of the 
coupled inductors.

Then, the output voltage of the Y-source converter is:

(2)
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where

So when diodes D1 and D2 are reverse biased, the reverse 
bias voltages of the two diodes are:

(3)
(4)

Although the Y-source converter has very prominent 
advantage, it also has many shortcomings. In this paper, an 
improved quasi-Y-source converter (IQY) is presented for 
renewable energy generations, using a Y-source and boost 
impedance network. Compared with the traditional boost 
converter, the improved Y-source converter not only has 
higher voltage-gain, continuous input current and no inrush 
current, but also has flexible selection of the shoot-through 
duty ratio range and the turns ratio of the coupled inductors. 
It is more suitable for new energy generation systems.

II. Proposed Topology and Operating States

The proposed dc-dc converter is shown in Fig. 2, which 
consist of a quasi-Y-source dc-dc converter combined with a 
boost converter. The input of the converter is Vin, which can 
come from a photovoltaic power generation system or other dc 
source. Same as Z-source converters, the proposed converter 
also has two operating states: (1) SW1 is on, SW2 is off, and 
(2) SW2 is on, SW1 is off. Given that the switching cycle is 
T, T0 is the turn-on time of SW1, T1 is its turn-off time, app-
arently T = T0 + T1, so the duty cycle of SW1 is D = T0 / T. 
And the equivalent circuits during two operating states are 
shown in Fig. 3(a) and (b), respectively.

In the turn-on time of SW1, the diode D0  is turned on and 
the diode D1 is in reverse bias state. By applying Kirchhoff’s 
voltage law (KVL) in this mode, the voltage equations in 
this state are:

Fig. 1.  Illustration of (a) Y-source dc-dc converter, (b) the equivalent circuit in 
shoot-through state and (c) the equivalent circuit in non-shoot-through state.
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Fig. 2  Illustration of the proposed dc-dc converter.
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where N1、N2 and N3 are the winding turns of the coupled 
inductors. By inserting (8) in (7), we have:

 (9)

In the turn-off time of SW1, the diode D0 is in reverse bias 
and the diode D1 is turned on. From the equivalent circuit 
diagram, Fig. 3(b), one has:

(10)
(11)
(12)
(13)

By replacing (8) in (13) we will have:

(14)

Thus:

(15)

By applying voltage-second balance principle to the inductors 
L0、L1 and windings of transformer, the average voltage over 
the inductor is equal to zero, hence:

(16)
(17)
(18)

By inserting (9) and (15) in (18), we will have:

(19)

Then by combining (6), (8), (12), (15) and (19) in (17) , we 
have:

        (20)

By replacing (6), (11) and (20) in (17), we will have:

          (21)

Defining K , so equation (21) can be rewritten as (22).

                       (22)

Similarly, by inserting (5) and (10) in (16), we will have:

                             (23)

Now, using (21) and (23), the voltage gain is obtained as 
follow:

               (24)

So when the diode D1 is in reverse bias state, using (7), (8) 
and (19), the voltage over D1 is:

                       (25)

When the diode D2 is in reverse bias state, the voltage over 
D2 is:

                                    (26)

The overall gain can be varied by changing D (the 
shoot-through duty cycle) and K (turn ratios), in order to 
better illustrate the boosting performance of the proposed 
converter, which can be depicted in Fig. 4. It will be shown 
that high transfer gains can be achieved with small shoot-
through (ST) duty cycle by increasing the turn ratio K. It can 
be seen from Fig. 4 that the improved quasi-Y-source converter 
has a higher voltage gain than the conventional Y-source 
converter. Different winding turns ratios (N1: N2: N3) have 
been collectively summarized in Table I. The same winding 
factor K, voltage gain and range for D have been given in 
each of these groups.

From (2) and (24), we can know that the voltage gain 
of the proposed topology is higher than the conventional 
Y-source converter. As shown in Fig. 5, in order to more 
intuitively observe the difference between the two topologies, 
let K = K' = 3, and plot the voltage gain curves of the two 
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Fig. 4  The theoretical voltage gain of the proposed converter for different 
winding factors K.
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topologies.
From [12], we can know the range of variation for K' and 

D can be determined as K' K' . Under the same 

output voltage, the voltage stress of the diode D2 of the IQY 
is as large as the Y-source converter, however, the voltage 
stress of the diode D1 of the IQY is much smaller than the 
Y-source converter. From (3) and (25), we have:

(27)

Where  VD1 is the voltage stress of the diode D1 of the IQY, V'D1 

is the voltage stress of the diode D1 of the Y-source converter.
It is worth noting that the leakage inductance between the 

coupled inductors can’t be ignored, which can cause large 
switching transients and reduce the effective switching duty 
cycle, resulting in a reduction in the system's voltage gain 
and efficiency. Therefore, the leakage inductance should be 
reduced as much as possible.

In summary, in order to better understand the difference 

Fig. 5  Theoretical voltage gain of the proposed converter and Y-source 
converter when the winding factors K = K' = 3.

between the Y-source converter and the proposed topology, 
we list the advantages and shortcomings between both of 
them in the Table II.

A double closed loop structure is used in the controller to 
adjust the output voltage to follow the given. Its inner loop 
is a current loop that allows the output current to follow the 
input quickly. The outer voltage loop adopts PI controller 
to meet the requirements of output stability, and the current 
inner loop adopts P controller to meet the requirements of 
rapidity. Besides, the controller also reduces the influence 
of leakage inductance on the duty cycle. The structure 
diagram of the controller is shown in Fig. 6. The PWM pulse 
generated by the controller is used to control the on and off 
of the switches.

III. Simulatlon and Experimental Results

Simulation is performed in MATLAB/Simulink environment, 
using the parameters listed in Table III, which are also the 
parameters of the experimental prototype.

According to (24) derived above, when D = 0.15 and 
Vin = 36 V, the output voltage of the improved quasi-Y-source 
is theoretically Vo = 105.9 V. It can be seen from Fig. 7 
that the simulation results are basically consistent with the 
theoretical values. In addition, it shows that the improved 
quasi-Y-source converter has high voltage gain, no inrush 
current and continuous input current.

In order to verify the correctness of the theoretical analysis, 
a low-power open-loop test prototype is set up in the 
laboratory. Use the DSP TMS320F2812 to output a set of 
complementary PWM pulse signals to control the on and 
off of the switches. Fig. 8 shows a three-winding coupled 
inductor and a physical circuit diagram. To reduce leakage 

K Range of D Voltage Gain  Possible Turns Ratios N1: N2: N3 

1 0 D 1/2 1/(1 2D)(1 D) 
1:1:3, 2:1:4, 1:2:5, 3:1:5 

4:1:6, 1:3:7 

2 0 D 1/3 1/(1 3D)(1 D) 
1:1:2, 3:1:3, 2:2:4 

1:3:5, 4:2:5 

3 0 D 1/4 1/(1 4D)(1 D) 
2:1:2, 1:2:3, 4:2:4 

5:1:3, 8:1:4 

4 0 D 1/5 1/(1 5D)(1 D) 
3:1:2, 2:2:3, 1:3:4 

7:1:3, 6:2:4 

TABLE I
Gain of Proposed Converter Versus Winding Factor and Turns Ratios
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inductance, an E-core instead of a toroidal core is used, and a 
flyback winding is chosen when make the coupled inductor.
In this way, the leakage inductance of each winding of the 
coupled inductor can be controlled within 10 µH. Although 
the proposed new topology has small leakage inductance, 
there are still surge voltages and currents. In order to get 
better output voltage and current waveforms, and protect 
the controllable power switch, a RCD snubber circuit is 
added to the circuit, where the parameters of the resistor and 
capacitor are R = 50 Ω and C = 10 µF, and the diode uses a 
fast recovery diode.

When D = 0.144 and K = 3, the experimental waveforms 
of each inductor current, capacitor voltage, the voltages of 
the controllable switches and the diodes, and output voltage 
at steady state are shown in Fig. 9. From the experimental 

TABLE III
Parameters and Component Values of the Converter
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Fig. 7  Simulation results of improved quasi-Y-source converter at D = 0.15 
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Fig. 8  The experimental setup of proposed converter and three-winding 
coupled inductor.
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Fig. 9  Experimental results. (a) The pulse signal of switch SW1. (b) The 
current of L0 and L1. (c) The voltage of C0 and C2. (d) The voltage of C2. 
(e) The voltage of D1. (f) The voltage of SW1. (g) Output voltage Vo of the 
improved quasi-Y-source converter when K = 3, D = 0.144.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

waveforms, it can be concluded that the measured values 
are consistent with the theoretical values and the simulation 
results.

Fig. 10 shows the measured efficiency and voltage gain of 
the converter at K = 3, where D changes to keep the output 
voltage constant at 105 V. It can be seen from this figure 
that the recorded efficiency is the highest when D = 0.05, 
which is 96.2%. At D = 0.2, it drops to 89.9%. The drop 
in efficiency may be related to a large breakdown current, 
which can cause large leakage current and reduce the 
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effective switching duty cycle, resulting in a reduction in the 
system's voltage gain and efficiency, which can be reduced 
by using better wire or bus-bar to reduce the parasitic 
parameters and the stray losses. As for the efficiency of the 
Y-source converter, it becomes lower at higher duty cycles 
because it is more affected by the leakage inductance.

IV. Conclusions

In this paper, a new type of improved quasi-Y-source dc-
dc converter based on the traditional quasi-Y-source structure 
is introduced, which own all the benefits of the existing 
Y-source dc-dc converter, such as extremely high boost gain 
and flexibility in designing winding magnetics. In addition, the 
converter has higher voltage gain, continuous input current and 
small starting inrush current. Undoubtedly, it is better than 
the quasi-Y-source converter for renewable energy systems. 
The mathematical derivation and experimental results for 
verification clearly demonstrates the expected performance 
of the proposed dc-dc converter and its practicality.
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Open-Loop Power Sharing Characteristic of a
Three-Port Resonant LLC Converter

Yan-Kim Tran, Francisco D. Freijedo, and Drazen Dujic

Abstract—The Solid State Transformer (SST) is an attractive 
solution for highly flexible, cost-effective, compact and efficient 
power transfer among different grids. Furthermore, a three-
port topology is proven as a suitable solution to integrate energy 
storage resources, the key functionality of emerging SST concept. 
Among other alternatives, the resonant LLC series resonant 
converter (SRC) is the cost-effective solution to implement the 
DC-transformer functionality, which is a core part of the SST. 
This paper addresses the power sharing characteristics and 
the zero-voltage switching (ZVS) conditions of a galvanically 
isolated three-port SRC, operated in DC-transformer mode. A 
mathematical model, which effectively decouples principal from 
circulating currents and power flows, is proposed and developed. 
This new mathematical framework eases the analysis; and reveals 
a constant power sharing characteristic tightly dominated by the 
resonant tank parameters even though some degrees of freedom 
are allowed thanks to the introduction of a differential voltage at 
the input terminals. Subsequently, design aspects and assessments 
of working operation conditions are also reported. The accuracy of 
the proposed model is verified by experimental validation on a lab-
scale prototype.

Index Terms—DC-DC converters, medium-voltage DC (MVDC), 
multiport, resonant converter, solid state transformer.  

I. Introduction

SOLID State Transformer (SST) defines an emerging tech-
nology aiming for a more reliable, flexible, compact and 

efficient alternative to bulky line-frequency transformers 
(LFTs). The SST concept includes power conversion 
among DC and/or AC grids of a different kind [1]–[4]. 
The high expectations from SST solutions also include new 
functionalities, such as integration of energy storage, which 
can be made by multi-port topologies [5]–[10]. SST is already 
a competitive solution in several applications such as traction 
propulsion chain [11], [12], on-board distribution networks for 
marine [13], [14], photovoltaic parks [15], offshore wind-farms 
[16], data centers [17], or distribution in urban areas [18].

Fig. 1 shows a three-port SST solution with integrated 
energy storage. The overall system comprises two main kinds 
of subsystems: (i) DC external grids, which are interfaced by 
an active front-end that tightly regulate voltage/current/power 
at their terminals; different high level regulation strategies may 
be considered at this stage [1]–[4]. (ii) The DC-transformer 
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operation is implemented using a three-port LLC series resonant 
converter; it provides voltage adaptation, natural power sharing 
and galvanic isolation among the different electric subsystems 
(in a similar manner as LFT) [4], [11], [12]. It provides a tight 
voltage coupling between the three ports and may, therefore, 
be operated in open-loop; the power conversion blocks work at 
a relatively high switching frequency that allows to drastically 
decrease the size of the so-called medium frequency transformer 
(MFT) [4], [11], [12], [19], [20].

Meanwhile, there is an ever increasing number of works 
focused on the system-level advantages of SST, the state-of-the-
art addressing multi-port SRC based DC-transformer contains 
only a few works [5]–[10]. From these works, there is an overall 
agreement that the resonant frequency has to be the same for 
all the ports, which implies a careful design of the resonant tank 
and parameters as well as the operation with 50% duty cycle 
and equal switching frequency for all the active terminals. The 
suitability for integration of low vottage (LV) storage elements 
(batteries or ultra-capacitors) is presented in [8]. Clearly, besides 
the feasibility of the multi-port SRC topologies, a systematic 
and rigorous mathematical analysis describing the natural power 
sharing principles is not available in the literature. The systematic 
evaluation is needed to address the limits of the topology and 
derive design rules that permit to consider the technology at an 
industry level. And even though the modelling with the well 
known First Harmonic Approximation (FHA) [6], [7] is possible, 
the detailed description of the waveforms, required for the soft 
switching and the losses evaluation is not captured by this method.

To cover the lack of analysis that may help in the elaboration 
of design rules, this paper presents a rigorous mathematical 
modeling of the three-port LLC-based DC transformer; the 
natural power sharing, as a function of the MFT parameters, is 
derived and characterized. To do so, an equivalent model that 
simplifies significantly the original mathematical model of the 

V

V

Fig. 1. A three-port SST with integrated energy storage, interfacing a medium 
voltage (MV) DC-grid and a low voltage (LV) DC-grid. The core of the system 
is a three-port resonant DC-transformer. Two active regulation stages are added in 
order to control the power through the DC voltage on the MV and the storage side.

CPSS TRANSACTIONS ON POWER ELECTRONICS AND APPLICATIONS, VOL. 4, NO. 2, JUNE 2019



172 CPSS TRANSACTIONS ON POWER ELECTRONICS AND APPLICATIONS, VOL. 4, NO. 2, JUNE 2019

multi-port DC transformer, but still enables the precision required 
for the soft switching characterization, is proposed. Subsequently, 
it is discussed how the natural power sharing can be modified by 
acting on the input voltages; the influence of the source voltages 
is accurately quantified using the proposed model. This part of 
the analysis gives an idea of how effective is SST regulation at 
an interface level (point i) of the operation described above). The 
conditions that lead to a loss of zero-voltage switching (ZVS) 
operation, and hence to a potential efficiency drop, are also 
identified from the equivalent model provided. Comprehensive 
experimental tests fully verify the theoretical modelling and, 
therefore, validate the proposed design insights.

The organization of the rest of the paper is summarized as 
follows. The next section presents the problem description 
and the modelling challenges to provide self-contained design 
guidelines. Section III shows the proposed mathematical 
approach, which is based on a change of variable that allows 
obtaining two equivalent decoupled systems. Section IV derives 
the power sharing characteristics as a function of the MFT 
parameters, input-voltages and losses. Section V shows the ZVS 
regions for the DC-transformer operation. Section VI shows 
and discusses the experimental results. Finally, the conclusion 
summarizes the most important findings.

II.  Circuit and Problem Description

While all three ports are made from active switching 
elements, they can be operated with active switching actions 
or be used as passive diode rectifier, depending on the power 
flow. The mode of operation analyzed in details in this paper, 
considering the DC-transformer with two inputs and one output, 
is depicted in Fig. 2. The circuit includes a three-winding MFT 
with the number of turns given by n1, n2, n3. The input ports (1 
and 2) are active sources equipped with two resonant tanks of 
the identical resonant frequency fres composed by the capacitors 
C1 and C2′ combined with the leakage inductance L1 and L′2. 
The third port acts as a passive load. The semiconductors of 
the input ports are switched at the same fixed frequency with a 
constant duty-cycle of 50% and the same phase [10]. In order 
to benefit not only from ZVS [21] and reduced turn-off current 
on the primary switches but also from zero-current switching 
(ZCS) on the secondary diode rectifier, the switching frequency 
is set slightly below the resonant frequency (fsw < fres) [22]. The 
DC bus capacitors CDC are sized much bigger than the resonant 
capacitors, so, for the purpose of modelling their voltage VDC 
can be considered constant; i.e., square-wave voltage sources 
of amplitude V1 =  /2 and V2′ = ′ /2 are considered. The 
power transferred to the load port ( Pload = P3) is the sum of both 
contributions P1 and P2 from each active ports.

The converter is sized to be operated in a half-cycle 
discontinuous mode (HC-DCM) [23] over its complete 
operating range [10]. Thus two intervals can be identified per 
half-period, as depicted in Fig. 3 and detailed in the following. 
It may also be noticed that, for modelling purposes, the circuit 
parameters L2′, C ′2 , V2′ and V3′ are referred to the port 1 of the 
transformer and represented by L2 = L2′ n1

2/n2
2 , C2 = C2′ n

2
2 /n1

2, 
V2 = V 2′ n1/ n2 and V3 = V3′ n1/n3 (for the sake of simplicity, 

a loss-less converter without parasitic resistances, i.e., R1 = 
R2 = 0, is considered firstly). During the interval W, the two 
active ports are delivering power to the load as well as the 
magnetizing current im; the voltage seen at the magnetizing 
inductance terminals is clamped by the voltage on the load port 
due to the conduction of the diodes [9], [10]. When the output 
diode rectifier stops conducing, interval X starts. The two active 
ports are only supporting im, and the magnetizing inductance 
terminals are no longer clamped, while the load is supported by 
the output capacitors. Intervals Y and Z are the same as W and 
X respectively with opposite voltage and current polarity. The 
circuit time-domain equations should be calculated for each 
interval. For the interval W, the two input (k = 1, 2) voltages, 
and currents are given respectively by:

(1)

The voltage and current of the third port (output) are given by:

(2)
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The Laplace transform with initial conditions is considered to 
obtain time-domain expressions. From the step response at t = 0, 
and assuming ideal voltage sources, of amplitudes V1, V2 and 
V3, respectively:

(3)

Expressions for i1 (s) and i2 (s) can be simplified by introducing 
ω2 = 1/(L1C1) = 1/(L2C2), which gives (for k = 1, 2):

 
(4)

Back in time domain, it yields:

(5)

and

(6)

For the interval X, the voltage equations are:

(7)

Using the Laplace transform and the initial conditions i1 (t1), 
i2 (t1), v  (t1) and v  (t1):

(8)

And subsequently, it yields:

(9)

Solving the system given by the equations (9), the three 

currents in the interval X become:

(10)

with the constants being equal to:

(11)

By inspection of (10) and (11), the two input subsystems are 
strongly coupled during the X interval. Eventually, in the search 
for insightful design guidelines, dealing with a high order 
highly coupled model has been found forbiddingly complex. 
Alternatively, a change of variable taking into account the 
topology is proposed, as detailed in the next section.

III. Proposed Model

A systematic analytic development, based on changes 
of variable, which permits to derive power sharing rules is 
provided in this section. The idea is to obtain a set of variables 
that are decoupled during all the intervals. Looking at the 
parallel/series symmetries in Fig. 2, the following substitutions 
in (5) and (10) are proposed. A common mode equivalent or 
parallel combination of the input ports is identified. The input 
voltage and current become

(12)

while the parallel equivalent resonant tank is given by

(13)

Then, the differential mode equivalent is characterized by the 
voltage and current expressed as
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(14)

The series combination of the resonant tank gives

(15)

The “P” and “S” subscripts refer to parallel and series  
equivalents, but may be also related to common and differential 
modes. After substituting original variables by “P” and “S” 
equivalents, the interval W circuit is described by

(16)

(17)

Similarly, for the interval X

(18)

(19)

It is worth noting that iW
S  (t) and iX

S  (t) can be merged in

(20)

which holds valid for all intervals defined by (0, tsw /2).
After the transformation, two fully decoupled “P” and 

equivalent systems are obtained. The sub-circuits correspond 
to each circuit and interval are depicted in Figs. 4 and 5. By 
inspection of Figs. 4 and 5, the power delivery to the load 
depends on the “P” circuit, meanwhile the “S” circuit represents 
power re-circulation between the sources.

IV.  Power Sharing Expressions

As early mentioned, the ideal loss-less case is considered 
firstly (in order to ease the mathematical development). 
However, the losses are also included in subsection IV-B, since 
they have a relevant role in the power sharing characteristics.

A.  Ideal Case

The power delivered to the load is modelled in the “P” circuit 
(cf., Fig. 4), which is defined by

(21)

It should be noticed that “S” circuit is purely reactive (cf., 

Fig. 5), so

(22)

The average power transferred to the load by each active port 
(k = 1, 2) is given by

(23)

Development of this expression for the port 1, and also 
having into account (22) and the changes of variable in (12) to 
(15), gives

(24)

And, for the second port

(25)

By inspection of (24) and (25), in a rated condition, the part 
of the total power that corresponds to each port is a function 
of the MFT leakage inductances. A deviation from the ratio is 
caused by the presence of a differential voltage VS (which may 
be regulated outside the resonant multi-port stage), but will, in 
practice, remain rather small as VS  << VP  is expected.

At this point, it is key to stress that the “P” and “S” 
equivalents permit to calculate the power sharing rules without 
needing to solve the initial conditions of the circuit, which 
drastically eases the analysis and reveals design rules insights 
based on natural power sharing characteristics.

Anyway, as the equivalent circuits “P” and “S” are fully 
decoupled, the steady-state boundary conditions may be 
calculated solving:
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(26)

These expressions are employed to assess the ZVS conditions, 
in Section V.

1) Worst Case Analysis for Tolerances of the Resonant Tank 
Parameters

If tolerance values are considered for the resonant tank 
parameters, the assumption of an identical resonant frequency 
for both resonant tanks, used to get (4), is no longer valid and 

. The expressions for power 
sharing becomes:

(27)

And, for the second port

(28)

Assuming VS = 0,

(29)

And, for the second port

(30)

The worst case scenarios correspond to the values that 
maximize/minimize < P1 > and < P2 >; by inspection of (29) 
and (30) these correspond to the combinations of i) ( Lmin

1  , C
max
1   ,  

Lmax
2     , C

min
2    ) and ii) (Lmax

1    , C
min
1     ,  L

min
2  , C

max
2     ).

B.  Consideration of System Losses

The circuit losses during operation, such as conduction and 
switching ones, are reflected on the system dynamics and, 
therefore, can be modeled by equivalent resistors [24]. An a 
priory estimation of their values is a complex task, but they can 
be measured from the experimental curves [24]. Equivalent 
series resistors per port (i.e., R1 and R2) are included in the 

analysis, with R1/L1 ≈ R2/L2 being assumed. Subsequently, the 
“P” and “S”equivalents are defined as

(31)

Figs. 4 and 5 already include these terms. (23) is re-calculated 
considering the voltage drops at RP and RS and also taking into 
account that (22) is no longer true (i.e., “S” circuit is not purely 
reactive) and gives:

(32)

The losses are included within the new terms in (32):

(33)

It has to be noted that the active component of the differential 
current iS (t) is due to the presence of RS. In order to simplify the 
notation, the factor k12 and k21 are introduced and are given by:

(34)

Since k12 and k21 are smaller than 1 and VS << VP, the second 
term of (32) becomes very small and can be neglected. If the 
same is applied to the losses, which are also expected very 
small, (32) can be simplified in (35) which leads to the graphical 
representation of Fig. 6.
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P

P

S

S

                         (35)

V. Assessment of ZVS Operation

ZVS operation is defined electrically by a set of conditions 
described in Fig. 7. First, during the turn-on event of a 
semiconductor, the dead time Tdt,k (adequately applied for the 
selected semiconductor voltage class) must be shorter than TD,k 

(according to Fig. 7, this interval starts with a load switching 
event and ends when ik (t) crosses zero): i.e,

d D                        (36)

Second, the current flowing through the switch during Tdt,k 

must be large enough to charge the output capacitance Coes,k 
(available from semiconductor data-sheet): from 0 to Vdc,k 
during the turning off; from Vdc,k to 0 during the turning on. This 
condition can be mathematically described by

(37)

with Qo,k being the integral of current during Tdt,k. For a given 
operation point, Qo,k can be approximated by the area of the 
trapeze defined by:

(38)

Currents i1(t) and i2(t) are needed to assess ZVS conditions 
at any operation point. The use of “P” and “S” equivalents 
helps in this assessment. First the original variables i1 and i2 are 
considered with the inverse of (12) and (14).

(39)

The initial conditions of iP(t) may be evaluated in function 
of PP as well as iS (t) is expressed in function of PS and the ZVS 
conditions may be verified over the complete operation plane 
defined by P1 and P2. Applying bi-port LLC design rules [25] to 
the “P” circuit, ZVS can be ensured on the axis given by k21/k12. 
By inspection of Fig. 7, Fig. 6 and (39), it can be noticed that the 
presence of increasing iS tends to push one of the subsystems 
out of the ZVS condition. This is illustrated in Fig. 8 which 
reveals the ZVS region over the plane (P1, P2). It can be drawn 
that by sizing the resonant tank (L1 and L2 ) adequately, the ZVS 
region can be influenced in order to match a specific operation 
region.

VI. Experimental Results

To demonstrate the validity of the developed model and 
power sharing in practice, a 4 kW rated converter comprising 
a three-winding transformer with a 1:1:1 turn ratio is realized. 
Fig. 9 shows a photograph of the lab-scale prototype. The 
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Fig. 6. Graphical representation of P1 and P2 in function of PP and PS. The axis 
where PS = 0 is defined by the resonant tank design with k12 and k21.

Fig. 8.  Theoretical ZVS operation area. It shows that the ZVS region is well 
impacted by the design of the resonant tank, with k21/k12.
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MFT is designed to be operated at fsw = 12 kHz. The load port 
has a leakage inductance around 0.8 μH, and the two active 
ports are equipped with resonant tanks with the parameters 
presented in Table I. Assuming a 5% tolerance for the resonant 
tank components in Table I, the maximum deviations for P1 
and P2 are 6.8% and 3.4%, respectively. The voltages V1 and 
V2 are generated with two DC power supplies, allowing to 
vary precisely the voltage of the two DC buses and test various 
operating points around 360 V. The three half-bridge converters 
are made of PEB-4046 modules from Imperix [26] which 
integrates the two IGBTs (IXYS MMIX1X200N60B3H1) and 
the DC-bus capacitors (825 μF). Two of them (on ports 1 and 2) 
are actively switched at fsw while the third one is passive and is 
used as a rectifier.

The experiments is carried out with resistive loads rated to 1, 
2, 3 and 4 kW. Fig. 10 shows figure of merit for different load 
conditions, which are in good agreement with the model, i.e., 
the amplitude of two input currents are proportional to the load 

and have the ratio  as defined by the components of the 

resonant tanks in Table I. Then, for the 4 kW load, different 
values of VS, between -15 V and 25 V, are considered in order 
to show the effects of circulating currents. Fig. 11 shows the 
measured current waveforms for two different operating 
points. The powers P1, P2 and P3 are directly measured at the 
DC terminals (using a N4L PPA5500 power analyzer). Power 
analyzer measurements well match calculations computed from 

the time-domain waveforms (acquired by the oscilloscope). 
PP and PS are computed from these latter. Fig. 12 depicts the 
influence of the tank impedance ratio on the sharing of PP 

between P1 and P2. The natural sharing characteristic is defined 
by the tank design and is maintained with changing load on the 
output (third) port. The losses effects on this result are clear: 
when the output power increases, the weight of losses terms 
in (32) is smaller and, therefore, (24)-(25) are more accurate. 
However, when PP is small, all the terms of (32) have an impact. 
In order to deep into the accuracy of the model with losses 
consideration, Figs.13 and 14 are assessed. The effect of VS on 
PS is shown in Fig. 13, illustrating that for the constant output 
load, the power sharing is highly sensitive to variation of VS. 
The impact of VS on the efficiency is depicted in Fig. 14 for the 
different loads although the lab set-up hardware has not been 
optimized in that sense, and its purpose is to validate power 
sharing characteristics.

VII.  Conclusion

This paper presents the model and the power sharing 
characteristics for a three-terminal SRC based DC-transformer 
for SST applications requiring an energy storage functionality. 
Among the possible modes of operation, the one considering 

Fig. 9.  4 kW/360 V rated experimental test-setup.

TABLE I
Resonant Tank Parameters

Lm L1 C1 L2 C2 f res 

400 H 17.5 H 5 F 35 H 2.5 F 17 kHz
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Fig. 10.  Resonant current waveforms (oscilloscope import) from measurement 
at 2 kW (light colors) and 4 kW (dark colors).

Fig. 11.  Resonant current waveforms (oscilloscope import) from measurement 
at 4 kW. The currents i1 and i2 are affected by the introduction of differential 
voltage VS , but the current to the load, namely i3 is not affected. To be noted that 
from t = −40 μs to 0, the currents flow in S1L , S2L and D3L while from t = 0 to 40 μs, 
the currents currents circulate in S1H and S2H  and S3H .

Fig. 12.  On the left, powers (P1 in blue and P2 in red) and, on the right, their 
corresponding sharing part Pk/(P1+ P2) when VS = 0. Apart from some deviations 
at light load conditions, the power sharing is constant and reflecting the 
ratio of the inductance defined in Table I, namely L2/(L1 + L2) = 2/3 and 
L1/(L1 + L2) = 1/3 (at low power operation, the impact of switching losses, 
which are load independent and not included in the model, is not negligible).
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two inputs and one output is the most complex and is therefore 
analyzed in this paper. In order to get a compact analytic 
solution, a model based the separation of the power flow into 
a main power (from the active ports to the load port) and a 
circulating power (between the active ports) is proposed (“P” 
and “S” equivalent circuits). The modelling reveals that the 
natural power sharing is mostly impacted by the resonant tank 
design parameters. The sharing is preserved in the absence of 
differential voltage between the active ports and can be, to some 
extent, influenced by further manipulation on the differential 
voltage which introduces a circulating power flow (influenced 
as well by the losses and parasitic resistances). However, if 
high circulating currents are forced, the ZVS conditions may 
be compromised. This gives basic design insights to size 
the resonant tank inductances in a way to benefit from soft 
switching in a specified operating region. The experimental 
results, obtained with a lab-scale prototype, match and 
effectively verify the proposed model.
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Fig. 14.  Efficiency for various operating points. The switching losses  
depending on the turn off currents (i1(0) and i2(0)) which are set by Lm and are 
load independent, the efficiency is reduced for light load conditions. Additional 
losses appear with the circulation of current iS , which explains the drop of  
efficiency for increasing |VS|.
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Fig. 13.  Measured PS and effect of RS on the theoretical curve. For RS = 0, it 
would be zero for any VS. The experiments show that RS, which represent the 
conduction losses and the switching losses associated to the circulating power 
flow, is around 0.55 Ω.
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