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Mutual Inductance Calculation of Rectangular Coils
With Convex Torus Finite Magnetic Shields in

Wireless Power Transfer
Zhongqi LI, Qian ZHANG, Lingjun KONG, Changxuan HU, and Shoudao HUANG

Abstract—Mutual inductance is one of the critical parameters 
of wireless power transfer systems, and the accurate calculation 
of mutual inductance is considered an essential theoretical basis 
for designing and optimizing wireless power transfer systems. 
However, the problem of calculating the mutual inductance of a 
bilateral bounded magnetically shielded rectangular coil with a 
convex toroid still needs to be solved. Therefore, this article pro-
poses a spatial boundary separation analysis method and derives 
vector magnetic potential expressions for each region with convex 
toroidal magnetic shielding structure using the double Fourier 
transform and Maxwell’s equations. The mutual inductance 
calculation formula under the spatial position are obtained using  
boundary conditions and spatial geometric relaionships. In  
contrast to traditional approximation methods, the mutual induc- 
tance calculation method of this article permits an accurate numerical  
solution for the mutual inductance between rectangular coils. The 
4.69% difference between calculated and experimental mutual  
inductance values confirms the accuracy of the computational  
method in this research. The proposed model of this article matches  
the transmission efficiency of the conventional rectangular disc  
coil at over 97% for the same specifications and reduces material 
usage by 11.12%. 

Index Terms—Magnetic shielding, radio energy transmission, 
reciprocal inductance calculation, rectangular coils.

I. Introduction

WIRELESS power transfer (WPT) technology is a non- 
contact power transmission technology [1]-[2] that is 
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gradually surpassing traditional power transmission methods 
in terms of safety, reliability. Hence, WPT technology holds 
considerable promise for evolutionary progress in the do- 
main of engineering applications and has been successfully  
applied to electric vehicles [3]-[4], portable electronics [5]-[6], 
biomedical science [7]-[8], and power supply for underwater  
environments [9]-[10], etc., and is now becoming an increasing  
research focus in the field of electrical engineering. In design-
ing and optimizing the structure of a WPT system, the mutual 
inductance (MI) is a core variable affected by the transmission 
performance, and the efficient and accurate calculation of the 
MI is a crucial component of this process. The structural design 
of the WPT system shows corresponding differentiation due 
to the diversity of application scenarios, with different system 
structures producing different MI coefficients, which in turn 
have varying degrees of influence on the system transmission 
efficiency. Therefore, it is of great importance to research 
methods for accurately calculating the coupling coefficients of 
MI models.

The coil acts as a crucial element in WPT systems. With the 
wide application of WPT technology, various types of coils 
have emerged, including rectangular, circular, polygonal, cross-
shaped, and so on. The current coil designs commonly include 
two primary forms, rectangular and circular. However, from 
a practical point of view, rectangular coil structures are more 
necessary and practical in specific application scenarios for  
WPT systems. This is because lower MI variations are exhibited  
by rectangular coils compared to circular coils when the 
coils are shifted relative to each other, which provides more  
excellent resistance to shifting and results in more stable  
transmission efficiency. Among them, MI calculation methods  
in circular coil structures have been the subject of many studies.  
In contrast, MI calculation methods for rectangular coil struc-
tures have been studied less frequently. The work on rectangu-
lar coil structures is based on Maxwell’s equations, Biot-Savart 
law [11]-[12], Bessel’s function [13]-[14], and Fourier series 
[15].

In a related study for MI modeling without the addition  
of magnetic shielding materials, [16] proposes a novel ana-
lytical calculation method. This method treats a multi-turn 
coil as multiple single-turn coils and MI calculation when 
the coils are vertically offset. Yet, it is not possible to realize 
MI calculation methodology when the coils in this mod-
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el are horizontally misaligned. [17] proposes to construct 
an MI model using the vertex method to achieve coupling 
coefficient calculation of rectangular coils of arbitrary di-
mensions when horizontally offset. Although the MI at the 
horizontal offset of the coil is calculated by the vertex ap-
proach, the MI has not been studied when coils are angularly  
deflected. In [18], by multiplying the helix factor k, it was  
realized to determine the MI of a rectangular helical coil at 
vertical and horizontal offsets as well as at angular deflections.  
An abstract approach is adopted in [19] by considering wires as  
ideal line segments of infinitesimal cross-section and calculating  
the MI between two any positioned quadrilateral coils by  
accumulating the MI of two straight wires at any position.

In the practical application of WPT systems, magnetic 
shielding materials are usually integrated the MI model. The 
addition of magnetic shielding can effec-tively diminish the 
risk of magnetic radiation, and it changes the magnetic flux 
path and enhances the inter-coil coupling effect. An analytical 
model based on Bessel-Fourier transform and dyadic Fourier 
transform is proposed in [20] to calculate MI for horizontal 
offsets between the coils with ferrite added on the transmit-
ting coil side, while disregarding the width-thickness ratio. In 
[21], the MI at any position between rectangular coils with 
magnetic media on the side of the transmitting coil only and a 
bounded thickness of the magnetic media is calculated using 
Fourier integration and spatial transformation methods. How-
ever, the length of the magnetic medium is not considered, 
while in practical applications, the size of the magnetic me-
dium is limited. [22] presents the solution for the calculation 
of MI between rectangular coils with a boundaried magnetic 
shielding on the side of the transmitting coils at arbitrary po-
sitions, which is based on hyperbolic functions and Fourier 
series expansions, in contrast to [21] where the boundaries of 
the magnetic medium are considered. [23] uses the separated 
variable method in order to calculate the MI of a rectangular 
coil with both side magnetic shielding. While the dimensions 
of the magnetic shielding are considered, it is not possible to 
realize the calculation of MI of a structure with boundaried 
magnetic shielding and rectangular coils. The MI model has 
been proposed in [24] by means of a subdomain division based 
method in order to calculate the MI at an arbitrary location 

between rectangular coils with boundaried magnetic shielding. 
Although the model provides an accurate solution for systems 
with bilateral bounded magnetic shielding materials, the 
conservation of magnetic shielding materials has not yet 
been fully considered. Therefore, the skeletonization of the 
magnetic shielding material can be considered, but it is in-
evitable that skeletonization will diminish the performance 
of the magnetic shielding material. [25] verified the shield-
ing performance of ring-type magnetic shielding material, 
and it was found that the shielding performance of ring-type 
magnetic shielding material is similar to that of rectangular 
disk magnetic shielding material under the same specifications.

In brief, the challenge of calculating the MI of bilateral 
bounded magnetically shielded rectangular coils with a convex 
toroidal shape is still unsolved. In view of the above, a compu-
tation model for the MI of the bilateral bounded magnetically 
shielded rectangular coil with a convex toroid has been estab-
lished in this article, as depicted in Fig. 1.

The computation of MI a rectangular coil with convex toroi-
dal bilateral bounded magnetic shielding is realized using the 
spatial boundary separation analysis method in this article. In 
the end, the feasibility and accuracy of putting forward com-
putational methodology are validated through simulation and 
experiment. Under the exact specifications, the MI can reach 
over 97% of that of the rectangular disk magnetic shielding 
transmission structure while saving up to 11.12% of the mag-
netic shielding material.

II. Analytical Two-Dimensional Model for a 
Rectangular Coil With Convex Toroidal  

Magnetic Shielding
The MI calculation process is divided into six steps, as illus-

trated in Fig. 2. Initially, the MI model is segmented into multi-
ple sectors along the horizontal and vertical directions. Second-

Fig. 1 Three-dimensional view of a rectangular coil of bounded magnetic 
medium with a convex toroidal type.

Fig. 2 MI calculation flowchart.
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ly, the vector magnetic potential flux equations of each region 
are obtained through Poisson and Laplace equations. Then, 
the unknown coefficients in the vector magnetic potential flux 
equations are determined by applying boundary conditions, 
and the correction factors are utilized to correct B-field of the 
two-dimensional model. The same steps are applied to the y-z 
section. Ultimately, magnetic flux density in the 3D model is 
achieved through superposition calculation, and subsequently, 
the MI is determined using formula. The detailed steps for the 
MI calculation are illustrated in Fig. 2.

A. 2D Model Analysis

In order to attain a magnetic shielding performance com- 
parable to that of the rectangular disk magnetic shielding 
material and to optimize the transmission structure model, 
adding another layer of magnetic shielding material above the 
magnetic shielding region of the MI model, thereby construct- 
ing a rectangular planar coil structure with a convex-type ring- 
type magnetic shielding, as depicted in Fig. 3. The system is 
initially segmented into different sectors according to material 
properties. Subsequently, the vector magnetic potential were 
derived for the individual regions. In the end, this includes the 
solution of unknown coefficients, the coupling of equations, 
and the transformation of a matrix.

Fig. 1 shows a three-dimensional illustration of the system 
under consideration. The rectangular coils in the figure are 
referred to as transmitting and receiving coils or primary and 
secondary coils, respectively. A zigzag ring-type magnetic 
shielding material surrounds the dielectric above and below. 
In the WPT system, the transmitting coil is located above the 
magnetically shielded region on the transmitting side and the 
receiving coil is located below the magnetically shielded region 
on the receiving side. This system uses two rectangular coils 
with the same geometry and magnetic shielding material. The 

proposed model is applicable for coils and magnetic shielding 
of different sizes.

A detailed x-z plane cross-section of the system, used to 
formulate the 2D subdomain model, is illustrated in Fig. 3. The 
entire system is divided horizontally and vertically into zones 
based on the nature of the different media and the structure of 
the system. Region 1 is designated as the air medium below 
the magnetic shielding material, and region 11 is designated as 
the air medium above the magnetic shielding material. Regions 
2 and 4 and regions 8 and 10 are represented by a cabochon- 
type magnetic shielding material, typically linear, isotropic, 
and homogeneous. Regions 2a, 4a, 8a, and 10a are located on 
the left side of the magnetically shielded area and regions 2e, 
6e, 8e, and 10e are located on the right side of the magnetically 
shielded area. To save on consumables, the system is hollowed 
out for the magnetic media, with regions 2c, 4c, 8c, and 10c 
representing the air areas resulting from the hollowing out of 
the magnetic media. Region 5 denotes an air region, located 
immediately below the transmitting coil region. Region 7 rep-
resents an air region, located immediately above the transmit-
ting coil region. Because the transmitting coil does not carry 
current, it is not divided into subregions in region 7. Regions 
3 and 9 are represented by acceptable air gaps in the middle of 
the convex ring-type magnetic media. Regions 6a and 6e de-
note air regions, immediately adjacent to the transmitting coil 
in region 6. Regions 6b and 6d denote current source regions, 
located above the magnetic shielding region on the transmit 
side. The region 6b is oriented in the same direction as the third 
direction y, and the region 6d is oriented in the opposite direc-
tion to the third direction y. Region 6c represents the air region 
and is located in the middle of the transmitting coil regions 6b 
and 6d.

Region i, as defined in Fig. 4, can correspond to any region 
ranging from region 1 to region 11. The boundaries and scope 
of the area are defined in the diagram.

The initial and terminal coordinates of region i are denoted 
by xs and xt in the x-direction, and by zs and zt in the z-direction, 
respectively. The specific value of xs, xt, zs, and zt in the r-region 
can be derived in Fig. 3. For instance, if i=6b, this indicates that 
the values of xs, xt, zs, and zt in region 6b are x3, x5, z6, and z7.

The magnetic flux density of the target region can be solved 
for only if the magnetic vector potential of the target region is 
calculated, and the vector magnetic potential of each region is 

Fig. 3 Cross-sectional view of the x-z plane for a rectangular coil with a convex 
torus magnetic shielding.

Fig. 4 Cartesian coordinate representation of region i.
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derived from (1) and (2). The exact derivation process is pre-
sented in the next section.

B. Vector Magnetic Potential Derivation

The stimulation current Ip passes along the transmitting 
coil, which, under the action of Ip, produces a varying mag-
netic field. The reason is that the receiving coil exists within 
the impact of the magnetic field of the transmitting coil. So it 
achieves electromagnetic coupling and produces a current un-
der the influence of the varying H-field.

To facilitate the computation of the H-field, the magnetic 
vector potential of the Lorentz norm is introduced. Magnetic 
vector potential (MVP) is a vector field in classical electro- 
magnetism used to describe magnetic flux density. Magnetic 
flux density (MFD) is a underlying attribute of H-field, used to 
depict the distribution of H-field in spatial extent.

In the presence of a current density region, the MVP is con-
trolled by the Poisson equation, as indicated by (1).

                                    (1)

where J denotes the current density. In other regions with no 
current density, the MVP is controlled by the Laplace equation, 
as given by (2).

                                 (2)

The MVP is determined by deriving (1) and (2) through the 
method of separation of variables. Then MFD is further calcu-
lated.

Br =  × Ar                                       (3)

where Ar represents MVP in the r region. Calculating MFD 
allows further calculation of H-field.

Hr = Br /µr µ0                                  (4)

Both µr and µ0 denote the relative magnetic permeability. µr 
denotes the medium in the r region, and µ0 denotes the air me-
dium.

The generalized formula for MVP in the region 6b and 6d is 
obtained by deriving (1). The components of MVP in the MI 
model are represented by (5). The other regional vector mag-
netic potential expressions are obtained by solving (2) and are 
given in (6).

                              (5)

                                 (6)

where the y-component of the r-region magnetic vector po- 
tential, considering only the z = zsr  

and z = ztr 
 boundary condi-

tions is denoted by  ; similarly,  represents the y-part of the 
r-region MVP considering only the x = xsr

 and x = xtr 
 boundary 

conditions.  denotes the vector magnetic potential under 

the current source area, which exists only in region 6b and 6d. 
The expressions for the MVP in each region, derived from the 
solutions of Poisson’s or Laplace’s equations, will be provided 
below.

1) Regions 2b, 2d, 4b, 4d, 6b, 6d, 8b, 8d, 10b, 10d
The MVP in these regions is derived from (1), with the ex-

pressions for  ,   , and  being given by (7), (8), and (9), 
respectively.

  

    (7)

   

           (8)

                                  (9)

where a particular region is denoted by r, Nr and Lr denote the 
number of harmonics in this MI model, where Nr denotes the 
harmonic parameter in the horizontal direction and Lr denotes 
the harmonic parameter in the verti-cal direction. And c0r 

, d0r 
,  , 

 ,  , and  denote unknown coefficients.  and  denote 
the spatial frequencies in this MI model.  and  are given 
by (10).

                          (10)

2) Regions 3, 5, 7, 9
In regions 3, 5, 7, and 9, the medium may not be air; how-

ever, it is assumed to have zero electrical conductivity and a 
magnetic permeability of µ0. The magnetic vector potential is 
also zero when x is xsr

 or xtr
. Consequently, the Laplace equa-

tion is applied, and (11) provides the vector magnetic potential 
expression for  in these regions.

  

    (11)

3) Regions 1, 11
In regions 1 and 11, the range of calculations for the mag-

netic field is limited. Hence, the MVP is assumed to be 0 under 
conditions z = z1, z = z12, x = x1, and x = x12. The vector magnet-
ic potential expression for regions 1 and 11 of   = 0 is given 
by (12), following applying Laplace’s equation.
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 (12)

4) Regions 2c, 4c, 6c, 8c, 10c
The medium in all regions is air, indicating that the Laplace 

equation governs the MFD in these regions. In the derivation 
process, by applying the critical values of MVP and MFD on 
the boundaries of these regions as boundary conditions, the 
generalized form of MVP for these regions can be derived.

  

   (13)

  

   (14)

5) Regions 2a, 2e, 4a, 4e, 6a, 6e, 8a, 8e, 10a, 10e
The magnetic field in all regions, being an air medium, is 

controlled by the Laplace equation. The y-part of the MVP 
in the r-region,  , is considered concerning only the z-side 
boundary conditions, and the y-part of the MVP in the r-region, 

 is considered concerning only the x-side boundary condi-
tions. Fig. 3 illustrates that the MVP is zero on the x-edge in 
xpr regions 2a, 4a, 6a, 8a, and 10a, and zero on the x-edge xqr 
in regions 2e, 4e, 6e, 8e, and 10e. Thus,  = 0 is substituted 
into (14) to obtain the magnetic vector potentials in regions 2a, 
4a, 6a, 8a, and 10a. The same can be obtained; however, for 
regions 2e, 4e, 6e, 8e, and 10e,  = 0 is substituted into (14) to 
obtain the magnetic vector potential.

C. Calculation of Unknown Coefficients

As illustrated in Fig. 5, the offered 2D subdomain analysis 
model showcases three distinct boundary condition patterns. In 
regions 1, 3, 5, 7, 9, and 11, the boundary condition illustrated 
in Fig. 5 is to be used. Since more than one region is connected 
to the z-edge of region r, the boundary conditions F(x) and 
G(x) on the z-edge are represented as segmented mapping. For 
region 1, xpr applied at the lower boundary is zero, while for 
region 11, xqr applied at the upper boundary is zero.

The pattern of boundary conditions in Fig. 5 must be applied 
in regions 2a, 2c, 4a, 4c, 6a, 6c, 8a, 8c, 10a, 10c, 2e, 4e, 6e, 
8e, and 10e. The  on the left boundary xs is zero in regions 
2a, 4a, 6a, 8a, and 10a, and the  on the correct boundary xt 
is also zero in regions 2e, 4e, 6e, 8e, and 10e, according to the 
special boundary relationship between regions. The boundary 
condition illustrated in Fig. 5 is to be used in regions 2b, 2d, 
4b, 4d, 6b, 6d, 8b, 8d, 10b, and 10d.

After determining the boundary conditions between the 11 
partitions and 31 subregions of the MI model, the coefficients 
to be determined for individual regions are calculated by the 
system of coupled equations. The subsequent part is dedicated 
to the derivation of the unknown coefficients within the vector 
magnetic potential. To elucidate the derivation progression, one 
of the neighboring side of region 6b is utilized as a case study.

In accordance with (7), The following expression for  on 
the edge of the bottom z = z6 of region 6b can be obtained.

 

                      (15)

The relationship between Ay6b
 and Ay5

 is obtained by applying 
the MVP as a boundary condition on z = z6 , ensuring the conti-
nuity of the MVP between the regions.

Fig. 5 Boundary condition model (a), (b) and (c).
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                               (16)

In the above equation, the series in the equation is viewed as 
the Fourier Series (FS) containing just the cosine factor. On the 
interval [x3 , x4], the FS expansion of L(x) = Ay5

 | z =z6
 -  | z =z6 

is 
performed to determine the coefficients c06b

 and .

                    (17)

       (18)

After the expression for Ay5
 | z =z6

 has been substituted into c06b
 

and , (17) and (18) can be rewritten as (19) and (20), where 
n6b=1,2,3 … N6b.

             (19)

       (20)

In (19), Tc(n5) and Td(n5) are related only to n5. The vari-
able s is related to the current source.

     (21)

   (22)

                (23)

In (20), Tc(n6b, n5) and Td(n6b, n5) are determined by n6b and 
n5.

   

         (24)

  

          (25)

Matrix representations are more readable, concise, and ex-

pandable than systems of equations, thus the coefficients to be 
determined for regions 5 and 6b are defined by the matrix, this 
matrix is a column vector of (2N5 + 1 + N6b) * 1. The current 
source matrix is a column vector of (1 + N6b) * 1. 

                   (26)

                       (27)

According to the array of equations, the length of the matri-
ces of c06b

 and  in region 6b is (1 + N6b * 1).The above system 
of equations can be expressed by (28).

[K5&6b] [D5&6b] = [O5&6b]                        (28)

In the above equation, [K5&6b] is the system information 
matrix that is associated with regions 5 and 6b, which encom- 
passes the dimensions, relative permeability,and conductivity 
of the two-dimensional subdomain model.

[K5&6b] = [ [T5&6b] [I5&6b] ]                       (29)

where [T5&6b] is the matrix of (1 + N6b) * 2N5 and [I5&6b] is the 
unit matrix that is of (1 + N6b) * (1 + N6b).

The complete form of (28) can be obtained by determining 
the coefficients by repeating the above method, utilizing other 
boundary conditions in each region, as demonstrated in (30).

[K] [D] = [O]                                  (30)

[D] is a column vector of length Lmax * 1, including all unde-
termined coefficients in the entire region.

[D] = [ [D1]
T [D2]

T … [D31]
T ]T                    (31)

[Dr] is the matrix of coefficients to be determined for a re-
gion in a two-dimensional subdomain, and Lmax is the sum of 
the number of coefficients to be determined in the subdomain, 
Lmax is denoted by (32).

Lmax = N1 + 2N2 + L2 + … + 2(N4b + 1 + L4b) + … + N31     (32)

[K] represents the Lmax * Lmax system information matrix, and 
[O] is the electromagnetic source matrix of length Lmax * 1. The 
coefficients to be determined can ultimately be calculated using 
(33).

[D] = [K]−1 [O]                                    (33)

III. Mutual Inductance Calculation for 
Rectangular Coils Enclosed by Convex Toroidal 

Magnetic Shielding
From the derivation of the first part of the equation, it is pos-

sible to calculate the MVP for individual regions. It is assumed 
that the extent of the third orthogonal plane is infinite, but the 
extent of the third orthogonal plane is finite in the actual MI  

Z. LI et al.: MUTUAL INDUCTANCE CALCULATION OF RECTANGULAR COILS WITH CONVEX TORUS FINITE MAGNETIC SHIELDS
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model. Hence, the MVP is made to vary in the third orthogonal 
plane by the calibration factor. In a coordinate system, the third 
direction is the three-dimensional space formed perpendicular 
to the plane comprising the coordinate system and extending 
outward from that direction. In Fig. 3 the third direction is the 
y-direction [26].

According to the Biot-Savart law [27], the calibration factor 
is defined as the ratio of the MFD of an infinite-length linear 
excitation to the MFD of a finite-length linear excitation.

The rectangular helical coil can be abstracted into four sepa-
rate conductors, as shown in Fig. 8. The lengths of conductors 
1 and 2 in the y-direction are wyr - wyl, and the lengths of con-
ductors 3 and 4 in the x-direction are wxr - wxl, where the param-
eter representations can be calculated from (34).

                                (34)

(35) gives the MFD at a point in an unenclosed region due to 
two infinitely long parallel conductors, 1 and 2, being excited.

inf  (35)

where the excitation current is Ip, Γxl =x-wxl, Γxr =x-wxr, Γz =z-zv, 
zv =z7-z6, k=µ0 Ip / 2π, the rest of the parameters can be calculat-
ed from (36).

                             (36)

(37) gives the MFD in the unconfined area excited by two 
finite-length conductors, 1 and 2.

   (37)

            (38)

            (39)

where h3 = ykl1-y, h4 = ykr2-y. ykl1 and ykr2 denote the dimension 
on the third direction y in the mutual induction model. The 
flux density excited by a straight line of finite length can be 
calculated by substituting the derived  and  into (37). The 
calibration factor in the MI model is derived from (40). In the 
MI model, the calibration factor for the third orthogonal plane 
can be similarly derived by the above steps. 

inf                               (40)

The literature proposes the coefficient function g(µi) [23], 
where µi denotes the relative permeability of the medium, and 
g(µi) is a function of µi , which reduces the error generated by 
the relative permeability.

DFEA

DFEA

DFEA

DFEA              (41)

In the above equation, the z-axis of the MFD derived from 
the three dimensional and two dimensional FEA models of µr at 
relative permeability are denoted by 

DFEA
(µi) and 

DFEA
(µi). 

The MFD in the z-direction derived from three dimensional 
and two dimensional FEA models of the unconfined region are 
also denoted by 

DFEA
(µi = 1) and 

DFEA
(µi = 1), respectively.

Since the coils are parallel to each other, only the perpendic- 
ular z-axis of MFD exists, which plays a role in determining 
the MI. In this WPT system, the total MFD under the three- 
dimensional areas is found by summing the subflux densities 
in each plane and then reducing the error by using calibration 
factors and coefficient functions g(µi), where the formula is 
calculated as (42).

D

D

D

D D

       (42)

(u, w) and (v, w) are the z-components of the MFD 
in the r-region derived from the individual planes in the MI  
model. Depending on the location of the receiving coil, it is 

Fig. 6 Simplified model of the coil.
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therefore necessary to find D(u, v, w) to further calculate the 
MI of this WPT system. The MI is given by (43).

D
              (43)

where Er denotes the winding count of the receiving coil, er de-
notes coil per turn, and Ser denotes the effective receiving area 
per winding count of the coil.

IV. Verification
Accuracy for (43) is verified through simulations conducted 

using ANSYS Maxwell software. As shown in Fig. 7, imped-
ance tester, acrylic frame and other devices is used for the mea-
surements. The experiments are conducted on a non-magnetic 
wooden table with an acrylic frame, and an impedance tester is 
used for testing. The transmitting and receiving side magnetic 
shields are constructed of 5 mm high permeability cabochon 
ring type magnetic shields placed outside the transceiver coils, 
respectively. The copper wire coil has a radius of 4 mm and 
contains ten turns. Current frequency set to 85 KHz. Coil and 
dielectric material parameters and coil harmonic parameters 
are illustrated in Table I and Table II.

This section will examine the offset variation of the coil in 
the horizontal and vertical directions. During the experiment, 
the transmitting side device was kept fixed and the receiving 
side device was adjusted for vertical and horizontal relative 
offset positions. The variation of the relative places of the coils 
in the experimental model is illustrated in Fig. 8.

A. Vertical Offset

For the receiving coil vertical offset experiment, set the ini-
tial distance between the receiving and transmitting coils to 30 

mm, and the receiving side unit is gradually moved to 120 mm 
in 10 mm increments along the z-direction. The offset schemat-
ic is depicted in Fig. 9.

In Fig. 9, ∆z denotes the dynamic spacing between coils. 
The green dashed line signifies the location of the receiving 
coil before the vertical offset, the blue solid line signifies the 
position of the receiving coil after the vertical offset, and the 
red solid line indicates the place of the transmitting coil. The 
MI data and error comparisons after the vertical offset of the 
receiving coil are recorded in Table III. Where Mc represents 
computational MI, Ms represents simulated MI, and Me rep-
resents experimental MI. ε1 denotes the mistake between the 
MI of the Mc and Ms. ε2 denotes the bias between the MI of the 
Mc and Me. Such expressions will be adhered to in the follow-
ing parts of this article. The expressions for ε1 and ε2 are given 
by (44) and (45), respectively.

                            (44)

                            (45)

Fig. 7 Experimental equipment.

Fig. 8 Relative position change of experimental model coils. (a) Vertical offset. 
(b) Horizontal offset.

TABLE I
Coil and Dielectric Material Parameters

TABLE II
Coil Harmonic Parameters

Symbol Parameter Value

N p Transmitting coil winding count 10

N s Receiving coil winding count 10

Lc Copper wire diameter 4  mm

L g Gap between coil and magnetic shield 5 mm

µr Relative permeability of ferrite 2800

I p Transmitting coil excitation current 10 A

f Current frequency 85 kHz

H e Height of inner edge 5 mm

Lx Coil size in x-direction 256 mm

Ly Coil size in y-direction 261 mm

Harmonic number Value

Harmonic
(N2a ,  N2b ,  N2c ,  N2d ,  N2e ,  N4a ,  N4b ,  N4c ,  N4d ,  N4e ,

N8a ,  N8b ,  N8c ,  N8d ,  N8e ,  N10a ,  N10b ,  N10c ,  N10d ,  N10e )  
40

Harmonic
(N1 ,  N3 ,  N5 ,  N9 ,  N11 ,  N6a ,  N6b ,  N6c ,  N6d ,  N6e ,

L6a , L6b , L6c , L6d , L6e , N7 )
100

Harmonic
(L2a , L2b , L2c , L2d , L2e , L4a , L4b , L4c , L4d , L4e ,

L8a , L8b , L8c , L8d , L8e , L10a , L10b , L10c , L10d , L10e )
40
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Analysis of the data in Table III reveals that the error ε1 be-
tween the Mc and Ms remains below 4.55%, and the error ε2 
between the Mc and Me does not exceed 4.69% for ∆z ranging 
from 30 mm-120 mm. The error between the Mc, Ms and Me 
values of mutual inductance is within 5% and the experimental 
results are in better agreement. Based on Table III, a plot of MI 
versus vertical distance between coils was illustrated as exhib-
ited in Fig. 10.

The curve in Fig. 10 shows that MI decreases gradually with 
increasing ∆z. This is due to the fact that the increase in ∆z 
causes a gradual decrease in MFD in the MI model and hence 
the MI value of this system gradually decreases.

B. Horizontal Offset

For the receiving coil horizontal offset experiment, ∆z in the 
MI model is maintained at a constant 40 mm. In the experi-
ment, the receiving coil is positioned in the horizontal direc-
tions in increments of 10 mm, beginning from the horizontal 

coordinate x = 0 mm and extending to x = 50 mm and x = -50 
mm, respectively. The offset schematic is depicted in Fig. 11. 
The MI measurements and their error comparisons when the 
receiving coil is horizontally offset are recorded in Table IV. In 
the table, x denotes the horizontal offset of the receiving coil, 
and this notation will be used in the subsequent sections.

Analysis of the findings in Table IV indicates that when the 
horizontal offset range x = -20 mm, the error between the Mc 
and Ms values does not exceed 4.0% in all cases except for the 
MI where the deviation ε1 between the Mc and Ms is 4.41%. The 
error ε2 between the Mc and Me of MI does not exceed a max-
imum of 4.31% and reaches a minimum of 1.77%. This indi-
cates a high level of agreement among the results of calculated 
MI, simulated MI, and experimental MI. According to Table IV, 
the modification of MI with horizontal offset distance between 
the coils is graphed as exhibited in Fig. 12.

Fig. 12 exhibits that when the vertical height is maintained 
constant, the receiving coil is moved in horizontal direction. 
MI decreases as the distance from the center position increas-
es. This is due to the fact that in this system the magnetic flux 

Fig. 9 Schematic diagram of the vertical offset of the receiving coil.

Fig. 10 MI variation curve with vertical distance of receiving coil.

Fig. 11 Schematic diagram of the horizontal offset of the receiving coil.

TABLE III
Mutual Inductance and Deviation at Vertical Offset

∆z(mm) Mc( μH ) Ms( μH ) Me( μH ) ε1 ε2

30 4.0896 4.2756 4.2667 4.55% 4.33%

40 3.3774 3.504 3.2189 3.75% 4.69%

50 2.7956 2.9119 2.7281 4.16% 2.41%

60 2.3771 2.4677 2.4234 3.81% 1.95%

70 2.0385 2.0965 2.0876 2.85% 2.41%

80 1.7372 1.7985 1.8011 3.53% 3.68%

90 1.4926 1.5451 1.4591 3.52% 2.24%

100 1.3194 1.3424 1.3053 1.74% 1.07%

110 1.1485 1.1802 1.1712 2.76% 1.98%

120 0.9943 1.0314 1.0194 3.73% 2.52%

Vertical distancel Δ z (mm)
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decreases gradually from the center to the edges and hence the 
value of MI decreases gradually as x increases.

C. Comparison

The speed of the computational model presented in the arti- 
cle is compared with the simulation software ANSYS Maxwell 
for solving MI under the same conditions using the computa-
tional software MATLAB. Ignoring the time spent on ANSYS 
Maxwell modeling, the MI model of a bounded magnetically 
shielded rectangular coil with a convex toroidal type has been 
computed in MATLAB and simulated in ANSYS Maxwell 
using the same hardware configuration. The results of the com-
parison of the solution speeds of the two methods are presented 
in Table V. In the table, tc represents the time taken for testing, 
t1−5 indicates the average time taken for ANSYS Maxwell sim-
ulation, and t6−10 indicates the average time taken for MATLAB 
computation. Ta indicates the duration for the computation or 

simulation of the MI value at vertical offset. Tb indicates the 
duration for the computation or simulation of the MI value at 
the horizontal offset. Tc indicates the duration for the compu-
tation or simulation of the MI values at horizontal and vertical 
offsets. The data analysis in Table V reveals that the fastest 
time for ANSYS Maxwell simulation is 77.13 seconds. In 
contrast, the longest time taken by the MATLAB programme 
employing the methodology of this article was 9.79 seconds, 
which is considerably shorter than the simulation time of AN-
SYS Maxwell. This demonstrates the significant computational 
efficiency advantage of the method used in this article.

The parameters from Tables I and II are incorporated into 
the system, and the ANSYS Maxwell model output depicting 
the z-x magnetic field distribution cross-section for the coaxial 
state with ∆z = 40 mm and the horizontal offset state with x = 
-50 mm is presented in Fig. 13.

Fig. 13 represents a graphical representation of the spatial 
distribution of MVP in this system at ∆z = 40 mm. The coaxial 
state and the horizontal offset state magnetic field distribution 
comparison graph indicate that MFD shows a gradual increase 
in the horizontal direction, followed by a gradual decrease, 
consistent with the distributional properties of MFD in this 
structure.

For the comparison of the calculation methodology used in 
the cited literature with the methodology presented in this arti-
cle, the outcome are shown in Table VI, where VO represents 
vertical offsets, HO represents horizontal offsets, MS rep-
resents with magnetic shielding, FMS represents with bounded 
magnetic shielding, and SM represents the ability to save con-
sumables.

The convex ring type magnetic shielding materiall presented 
in the article is replaced with the rectangular disc magnetic 
shielding material of the exact specifications, according to the 
parameters in Tables I and II. This article compares it to the 
transmission structure. The findings indicate that the material 
consumption is lowered by 11.12% with the convex ring type 
magnetic shielding material, compared to the rectangular disc 

TABLE IV
Horizontal Offset Mutual Inductance and Error

at Vertical Distance Δz=40 mm

TABLE V
Comparison of Time Taken for Computation and

Simulation of Mutual Inductance

x(mm) Mc( μH ) Ms( μH ) Me( μH ) ε1 ε2

-50 2.6969 2.7442 2.5936 1.75% 3.83%

-40 2.8982 2.9817 2.8163 2.88% 2.83%

-30 3.0775 3.1801 2.9628 3.33% 3.73%

-20 3.1967 3.3376 3.0590 4.41% 4.31%

-10 3.3036 3.4344 3.2349 3.96% 2.08%

0 3.4097 3.5029 3.2773 2.73% 3.88%

10 3.3253 3.4241 3.2427 2.97% 2.48%

20 3.2013 3.3218 3.1446 3.76% 1.77%

30 3.0781 3.1664 2.9458 2.87% 4.30%

40 2.8909 2.9732 2.8125 2.85% 2.71%

50 2.6876 2.7391 2.5774 1.92% 4.10%

Fig. 12 MI variation curve with horizontal offset of receiving coil.

tc(s) Ta(s) Tb(s) Tc(s)

t1 82.56 95.66 79.37

t2 86.46 94.24 81.34

t3 84.56 92.69 81.09

t4 82.56 97.66 80.45

t5 81.67 91.23 77.13

t6 8.41 8.89 6.90

t7 7.23 8.79 7.32

t8 8.65 8.63 6.90

t9 7.89 9.69 8.30

t10 8.79 8.32 8.12

Horizontal misalignment in x-axis direction x (mm)
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magnetic shielding material. Furthermore, the percentage of 
material savings for this model increases even more as the area 
of the transmission structure skeletonized with the toroidal 
magnetic shielding material increases.

Additionally, the investigation is conducted to examine the 
difference in the impact of magnetic shielding material on 
MI between a convex ring type and a rectangular disc using 
the same coil structure. With Table I and Table II, two kinds 
of power transmission models are constructed. The MI ratio 
is compared through simulation analysis when the magnetic 
medium is a convex ring type versus a rectangular disc. In 
this comparison, the rectangular disc magnetic shielding area 
is identical to the cabochon ring type, 300 mm×300 mm. The  
other coils and related parameters remain unchanged from 
those of the cabochon ring-type magnetic shielding transmis-
sion structure.

Within conventional mutual-inductance models, for instance 
those utilizing a rectangular plate magnetic shielding trans- 
mission system, that system performance stays relatively sta- 
ble. Should the performance of the MI model presented in 
this study surpass 97% of that of the original model, it can be 
inferred that this WPT system has effectively met the objec-
tives of diminishing production expenses while concurrently 
preserving transmission performance. Therefore, the simulated 
MI ratio data for the two trans- mission structures in the case of 
vertical offset and horizontal offset are provided in this article, 
as shown in Tables VII and VIII. In these tables, ∆z represents 
the vertical offset distance, and x denotes the horizontal offset 
distance. ε3 denotes the ratio of MI values between the convex 
annular magnetic medium and the rectangular disc magnetic 
medium in the WPT system. Mu and Mv respectively indicate 
the MI for the convex ring and rectangular disc magnetically 
shielded structures. The expression for ε3 is presented in (46).

                                    (46)

In summary, whether a vertical offset or a horizontal off-
set, the simulated ratio of MI between the convex ring-type 
magnetic shielding transmission structure and the rectangular 
disc magnetic shielding transmission structure remains above 
97.11%. Additionally, ε3 achieve a maximum of 99.87%. This 
indicates that this WPT system has largely maintained the 
transmission performance of the original MI model. Hence, 
material savings are achieved with convex ring-type magneti-
cally shielded power transmission structures while maintaining 
transmission efficiencies nearly identical to those of rectangular 
disc magnetically shielded structures. The manufacturing cost 
of this WPT system has also been effectively lowered.

TABLE VI
Comparison of Calculation Methods

TABLE VII
Comparison with Rectangular Disc Magnetically

Shielded Transmission Structure in Vertical
Offset Simulation of Mutual Inductance

Fig. 13 Comparative analysis of magnetic field morphology.

VO HO MS FMS SM

[19] √ × × × ×

[20] √ √ × × ×

[23] × √ √ × ×

[24] √ √ √ × ×

[26] × × √ √ ×

[27] √ √ √ √ ×

This paper √ √ √ √ √

∆z(mm) Mu(μH) Mv(μH) ε3

30 4.2756 4.2667 99.79%

40 3.5040 3.4989 99.85%

50 2.9119 2.9081 99.87%

60 2.4677 2.4434 99.02%

70 2.0965 2.0876 99.58%

80 1.7985 1.7911 99.59%

90 1.5451 1.5191 98.32%

100 1.3424 1.3193 98.28%

110 1.1802 1.1712 99.24%

120 1.0314 1.0194 98.84%

TABLE VIII
Comparison of Magnetic Shielded Transmission

Structures with Rectangular Discs in Horizontal
Offset Simulation of Mutual Inductance

x(mm) Mu(μH) Mv(μH) ε3

-50 2.7442 2.6969 98.28%

-40 2.9817 2.8982 97.20%

-30 3.1801 3.0775 96.77%

-20 3.3376 3.2967 98.77%

-10 3.4344 3.3536 97.65%

0 3.5029 3.4097 97.34%

10 3.4241 3.3253 97.11%

20 3.3218 3.2713 98.48%

30 3.1664 3.0781 97.21%

40 2.9732 2.8909 97.23%

50 2.7391 2.6876 98.12%
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V. Conclusion
This article presents a model for MI calculation of a rect- 

angular coil with a convex toroidal bounded magnetic shield, 
proposing an analytical method leveraging spatial boundary 
separation for precise calculations in complex regions. The 
method solves the MI calculation formulas in each region 
through the double Fourier transform, Maxwell’s system of 
equations, and the Biot-Savart law. The calculated results are 
verified for validity through simulation and experiment, with 
the findings indicating that the maximum error between them 
is 4.55%. The MI calculated, simulated, and experimental val-
ues are in agreement. The model achieves an 11.12% material 
saving over the conventional rectangular magnetic shielding 
transmission structure, with savings increasing with the open-
work area of the ring magnetic shielding.

Simultaneously, the MI value of this WPT system can 
achieve 99.87% of conventional WPT systems. The design 
can maximize material savings in the structure while ensuring 
transmission efficiency, possessing more pro- nounced prac-
tical functionality and widespread applicability. In addition, 
the proposed coil structure model and the results of the study 
provide theoretical support for the optimisation of the structure 
and variable of WPT systems, while also instituting a practical 
basis for the further advancement of MI calculation methods 
for WPT systems and the widespread application of more reli-
able and affordable wireless power transfer equipment.

In the end, this study provides a valuable reference and guideline  
for subsequent research on MI calculations for solenoid-type 

magnetically shielded rectangular coil structures.

Appendix A
In the matrix transformation process, (30) can be further 

derived as (33). [D] indicates the unknown in MVP, which 
contains the the elements of the unknown coefficients. [K] indi-
cates denotes the coefficients of the unknowns, which contains 
the elements of the known coefficients. [O] and the matrixis 
populated with elements representing the current sources in the 
equation. (47) and (48) give the extended forms of [D] and [O], 
respectively.

[D] = [ [D1][D2a][D2b][D2c][D2d][D2e][D3][D4a][D4b]
          [D4c][D4d][D4e][D5][D6a][D6b][D6c][D6d][D6e][D7]    (47)
          [D8a][D8b][D8c][D8d][D8e][D9][D10a][D10b][D10c]
          [D10d][D10e][D11] ]

T

Each element of [D] consists of a submatrix, the elements of 
which represent the unknown coefficients of vector magnetic 
potential.

[O] = [ [O1][O2a][O2b][O2c][O2d][O2e][O3][O4a][O4b]
          [O4c][O4d][O4e][O5][O6a][O6b][O6c][O6d][O6e][O7]    (48)
          [O8a][O8b][O8c][O8d][O8e][O9][O10a][O10b][O10c]
          [O10d][O10e][O11] ]

T

where each element of the [O] is a submatrix, the elements  
represent the current sources contained within the vector mag-
netic potentials. [K] and its elements are provided by (49).

where [V] is a submatrix within [K]. Each element of matrix [V] 
is also a submatrix, where [V0] represents the zero matrix, and 
the elements of other submatrices represent known coefficients 
of the vector magnetic potential. The submatrices of [V] are 
specifically represented from (50) to (60).

            (50)

              (51)

              (52)

              (53)

        (54)

      (55)

(49)
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(56)

(57)

(58)

(59)

(60)

where [I] signifies the unit matrix. The submatrix [C] signifies 
the coefficients of the array of equations. And a linear equation 
represents each row of the matrix.
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