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Data-Driven Control of Electrical Drives: A Deep 
Reinforcement Learning with Feature Embedding

Xing LIU, Dengyin JIANG, and Chenghao LIU

Abstract—Classical model-based control solutions dominated 
the research field of numerous electrical drives applications in the 
past forming a strong basis, since they usually result in control 
approaches with excellent performance. However, the design of 
these controllers strongly depends on the available knowledge of 
the controlled plant, which often leads to the lack of robustness 
owing to model-dependent nature. To take account of the defect, 
this work aims to provide a control framework that combines 
intelligent data-driven-based control protocol with the deep rein- 
forcement learning technique for electrical drives. Specifically, 
the two key features of this developed control framework that, 
first, a data-driven control architecture along with deep rein-
forcement learning technique that embedding the features of the 
agents’ inputs is developed to enhance the performance, second, 
the environment for the current agent is reformulated so as to 
avoid mutual interference between the two agents (controllers) in 
training for both speed and current in a dual-loop system. Finally, 
we demonstrate our solution and highlight its superiority on a 
case study, and the results presented are promising and motivate 
further research in this field. 

Index Terms—Feature embedding, intelligent control, motor 
drives, permanent magnet synchronous motor (PMSM), reinforce-
ment learning (RL).

I. Introduction

IN recent decades, permanent magnet synchronous motor 
(PMSM) drives, due to their prominent merits, such as high 
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energy efficiency, high power density, high reliability, and wide 
speed control range, have gained tremendous spread in various 
industrial and automotive applications. In particular, its appli- 
cations are expanding rapidly, such as industrial robots, electric 
vehicles, industrial automation, and power transmission sys- 
tems. Various control techniques for PMSM drives have been 
extensively explored in the literature [1]–[3]. Among them, the 
well-developed method used to control PMSM drive system is 
proportional-integral (PI) regulator together with pulse width 
modulation (PWM) modulator designed in continuous-time. 
To be specific, the PI controller regulates the system state vari-
able to track its desired value by generating a reference voltage 
signal to the PWM stage. This approach has a simple structure 
and easy to implement which uses a feedback loop to adjust the 
control signal based on the difference between the desired and 
actual values of the motor speed and currents. Although this 
is a reasonable approach, the controller parameters have to be 
properly tuned to ensure fast transient response and less steady-
state errors.

A. Literature Review and Motivation

Recently, model predictive control (MPC) is receiving  
considerable attention in electric drive systems [4], [5]. The 
popularity of this solution stems largely from the possibility to 
explicitly address multivariable nonlinear systems constraints. 
In electrical drives, MPC solutions can be loosely categorized 
in two categories based on whether a modulation stage is needed 
or not. Continuous control-set MPC (CCS-MPC) produces the 
continuous-time control inputs to the modulation stage in the 
controller formulation [6], while finite control-set MPC (FCS-
MPC) replaces the cascaded control structure without the inter-
vention of the intermediate stage [7]. The CCS-MPC method 
can be favored in applications where keeping a fixed switching 
frequency is crucial. The latter offers an improved dynamic 
performance which rely on a sophisticated mathematic model 
to predict future behavior of system state and optimize the control 
signal. Although extensive research works in the control of 
CCS-MPC and FCS-MPC have brought some improvements, 
pursuing excellent control performance while ensuring safety 
and reliability in the presence of uncertainties remains open for 
PMSM drive system [8], [9].

The rapid development of data-driven algorithm has pro- 
vided new avenues to overcome the aforementioned inherent 
limitation for control system design [10]–[12]. Its main work- 
flow is to obtain the parameters of a function approximator (is 
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usually a neutral network) by training it with a large amount of 
data based on observable variables of the controlled plant, and 
apply it in control process. The data-based supervised method 
can be utilized to tune controller parameters, calculate non-
linear magnetic flux, or identify motor parameters. It is even 
possible to train a neutral network to imitate the output of a PI 
or an MPC controller [13]. However, during the supervised 
training, both input and output data for an approximator are 
required in these applications, thus it is not possible to directly 
obtain a controller through this method.

Subsequently, with respect to another line of research, re-
inforcement learning (RL) has been predominantly studied in 
the electric drive field for many years and it has attracted much 
attention from researchers [14], [15]. Its workflow is to use the 
output of a random actor to interact with the environment, and 
train the actor through the rewards (the output of a critic) gen-
erated by the interaction. In this approach, the critic and actor 
are both neutral networks. The critic network approximates 
the reward through supervised learning, while the actor net-
work maximizes the reward through exploration and feedback. 
For general problems in finite action space, deep-Q-network 
(DQN) can achieve excellent performance, which makes RL 
applicable for controlling inverter switch states [16]. However, 
for a complete motor control system, continuous control may 
be more suitable, especially for the speed-to-current conver-
sion, which involves continuous input and output. It is worth 
remarking that deep deterministic policy gradient (DDPG) has 
solved the problems of implementing RL in continuous action 
space. It is an actor-critic, model-free algorithm based on the 
deterministic gradient which employs some methods such as 
experience reply, target network, and soft updates to improve 
training stability and solve physics tasks robustly. The emer-
gence of DDPG enables the possibility of directly learning the 
controllers for electric drive systems solely through data-driven 
approaches.

Some research studies on using RL controllers in PMSM 
drive system have been devoted to the enhancement of the 
robustness against parameter mismatch and disturbances. An 
RL current controller is proposed in [17], where the concept 
of PMSM controller design by DDPG is first proved. The au-
thors in [18] exploited an RL torque controller by deploying a 
complex reward rule so as to make the operating point adhere 
to maximum torque per current strategy. The results in [19] 
leverage an RL speed controller to reject active disturbance. 
Overall, for PMSM speed (or torque) control, it is possible to 
use a single RL controller to track the reference. However, in 
this sense, the control strategies for torque and current, such 
as maximum torque per ampere (MTPA) or maximum torque 
per voltage (MTPV), cannot be guaranteed, unless a complex 
multi-objective reward can be designed. On the other hand, it is 
still uncertain how to train two independent RL controllers for 
the dual-loop system and ensure their convergence while main- 
taining a strategy module for torque and currents. Motivated 
by these issues, it is expected to exploit a data-driven control 
architecture along with deep RL technique that embedding the 
features of the agents’ inputs for electrical drives in a dual-loop 

system. This consideration encourages the main innovation of 
the current research.

B. Main Contribution

Pursuing the aforementioned observations, we will launch 
a crucial study on the deep RL control problem, and we hope 
that this work lays a theoretical foundation and also inspires 
new achievements in the intersection of artificial intelligence 
(AI) technique and deep learning control theory. In this work, 
we further focus on investigating a novel intelligent data-driv-
en control architecture together with two RL controllers that 
embedding the features of the agents’ inputs for a dual-loop 
control system. This implies that both the speed controller and 
current controller are entirely learned by intelligent agents, 
rather than being designed through model-based approaches. 
To avoid mutual interference between the two controllers, this 
paper adopts a sequential training method, where the current 
controller is trained first, followed by the training of the speed 
controller. In particular, the current agent interacts only with the 
inner loop during training. The convergence and performance 
of the controllers have been validated under different operating 
conditions. The performance evaluation shows that the RL 
dual-loop controllers can achieve desired performance to the 
model-based approaches [17], [18], while also demonstrating 
better dynamics. Furthermore, this paper leverages embedding 
techniques to the controller variables, significantly enhancing 
the accuracy of reference tracking compared to [20], and this 
method can be naturally extended toward various control sys-
tems. Finally, extensive investigations for the electrical drives 
confirm the interest and the viability of the proposed design 
methodology.

Compared to existing literature, our method has the follow- 
ing novel aspects.

• Building upon the RL control protocol, in contrast to pre-
viously known results, this work goes one step further 
and accomplishes both speed and current control in a 
dual-loop PMSM drive system relying solely on data. To 
be more precise, the sequential training method used in 
this article avoids mutual interference between the two 
controllers and effectively aids in the convergence.

• Unlike much prior studies, by transforming the variables 
into embeddings before inputting them into the con-
trollers, significant improvements are achieved in both 
training and testing, which facilitate the alleviation of 
performance deterioration. This modification is quite gen-
eral and easy to implement in engineering applications 
and can be conveniently extended to other RL controllers, 
without sacrificing the simplicity of the control structure.

• Last but not least, effectiveness and performance of the 
proposal are validated extensively and highlighted by 
benchmarking it against other state-of-the-art control 
approaches including RL-based controller and PI-based 
controller. The extensive testing results in this paper in- 
dicate that when designing intelligent controllers, using 
data from various operating conditions in training is cru- 
cial. This literature opens up even more possibilities of 
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connections with power converter and/or motor control 
fields.

C. Outline of the Article

The remaining parts are structured as follows. In section II, 
we briefly describe the PMSM dual-loop drive system. Section 
III presents the speed and current controllers designed formu-
lation. Meanwhile, we provide a distinctive alternative and 
details of the proposed RL methodology. To be specific, we 
exploit an intelligent data-driven-based controller along with 
deep RL technique. In the following, to further enhance per-
formance under different operation scenarios, our work further 
focuses on developing a method that embedding the features 
of the agents’ inputs. Further, in order to avoid mutual interfer-
ence between the two agents (controllers) in training, the en-
vironment for the current agent is reformulated for both speed 
and current in a dual-loop system. In section IV, we verify its 
merits with different benchmark examples from the literature. 
Finally, conclusions and future works on the suggested control 
protocol are summarized in Section V.

II. Physical System
The iteration of an RL intelligent agent is realized through 

interaction with its environment. The iteration of an RL intelli- 
gent agent is realized through interaction with its environment. 
To address a specific problem, it is crucial to determine the 
environment in which the agent operates. In this paper, the 
environment in which the two agents (current agent and speed 
agent) operate includes physical systems such as a PMSM, an 
inverter module and a module for selecting operating point. 
Note that the two agents belong to each other’s external envi-
ronment. This aspect will be discussed in the next session.

In a vector control system, a PMSM can be modeled by a set 
of differential equations, which is described in the d/q coordi-
nate. It yields:

ud = Rid + Ld 
d - ωLqiq                                 (1)

uq = Riq + Lq   + ω(Ldid + ψf)                          (2)

Te =  p (ψpiq + (Ld - Lq) idiq)                           (3)

J  = Te - Tm                                      (4)

where ud, uq, id, and iq are the voltage and current of the motor, 
Te and Tm represent the electromagnetic torque and load respec-
tively, and ω represents the machine velocity. All variables in 
the equations are derived from observation and measurement 
of the PMSM, and the d/q components are obtained through 
coordinate transformation. In the completed trained control 
system, torques (Te, Tm) are not required to be measured due 
to the fact that their effects are reflected in changes in velocity. 
However, during the training phase, they needed to be observed 
so as to calculate the rotational speed in the environment.

A power electronic converter is usually deployed to drive 
the three-phase PMSM. The converter is powered by a con-
stant DC bus and, hence, the voltage range at the stator of the 
PMSM is limited. When it observed in α/β coordinate in Fig. 1, 
the maximum voltage that the inverter can provide is limited in 
a hexagon. Accordingly, even though the output of the RL cur-
rent controller is (-1,1), the modulation module still limits the 
actual voltage within a feasible range. This is a characteristic of 
the environment, which the RL agent needs to implicitly learn. 
Moreover, it is interesting to remark that the dead time of con-
verter should be taken into account to ensure that RL actor can 
adapt to the real environment [14].

In order to make the PMSM operate at the optimal point, the 
desired control solution are necessary after decoupling control 
into d/q coordinates. The selection of the operating point must 
firstly satisfy the constraints on current and voltage. High cur-
rent can lead to temperature rise and safety issues and, hence, 
the current should be limited:

                                (5)

As for voltage constraint, the operating point voltage must 
satisfy the requirement that it can be achieved by the modula-
tion module throughout the complete period. It should be noted 
that, unlike the limit in the inverter, the constraint here refers to 
the inscribed circle of the hexagon in Fig. 1, with a maximum

value of  udc. According to (1) and (2), the voltage of 

PMSM is small at low speed, so the voltage limit can be ig-
nored. At high speed, after neglecting the voltage drop across 
the resistance, this constraint can be expressed as:

ψ              (6)

After satisfying the current and voltage limits, the suggested 
strategy for the operating point is generally based on MTPA 
and MTPV. Based on (3) and the Lagrange Multiplier method, 
the reference values of d/q axis currents under MTPA strategy 
can be obtained:

ψ               (7)

Fig. 1. Limitation of voltage vector.
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Similarly, the reference values under MTPV strategy are 
given as:

ψψ ψ

       (8)

The operating point selection strategy is illustrated in Fig. 2, 
which aims to achieve the maximum torque while satisfying (5) 
and (6). For the reference torque shown in the figure (blue line), 
when the speed is low, the motor operates at point A deter-
mined by MTPA. Since the speed increases beyond the critical 
point of the voltage limit, the system will subsequently operate 
along the constant torque curve until point B. At this point, 
the current is saturated, and the PMSM is unable to maintain 
a constant torque. The motor will work along the current limit 
circle to provide maximum possible torque. Finally, the critical 
point of MTPV is reached. If the motor continues to accelerate, 
it will subsequently operate along the point C to D curve to 
fully utilize the voltage and obtain the maximum torque. The 

point D is a theoretical point at (- , 0). During training, the 

operating point is obtained through look-up-table (LUT) or 
analytical method. This strategy module, like the PMSM phys-
ical system, also belongs to the environment that the RL agent 
needs to adapt.

III. Design and Training
In this section, motivated by the aforementioned discussions, 

we aim at investigating on an intelligent data-driven-based 
controller design issues. To this aim, a data-driven control ar-
chitecture along with deep RL technique that embedding the 
features of the agents’ inputs is presented to enhance the per-
formance. Meanwhile, the environment for the current agent 
is reformulated so as to avoid mutual interference between the 
two agents (controllers) in training for both speed and current 
in a dual-loop system for electrical drives. In what follows, the 
suggested control design procedure will be discussed in detail.

A. Design Training Algorithm

The overall system is shown in Fig. 3, where the blue box 
represents the environment of speed agent, and the burgundy 
box represents the environment of current agent. Ideally, the 
Environment 2 should include all components in the system 
except the current agent. However, in this sense, updating the 
parameters of the speed agent will lead to change in the en-
vironment of the current agent, which will require retraining. 
Similarly, variations in the parameters of the current agent will 
require retraining of the speed agent.

On the other hand, if training both agents synchronously, it 
may lead to instability due to their different objectives and the 
mutual influence of their convergence. To address the issues 
associated with the aforementioned methods, this paper lever-
ages a solution where the current controller is first trained in 
Environment 2, followed by training the speed controller in 
Environment 1, and as shown in Fig. 3. Since the current loop 
is an inner loop, its dynamics should be faster than speed loop. 
Consequently, when the current controller is trained, the envi-
ronment of the current agent can be simplified by neglecting 
the dynamic process of the outer loop, as long as the trained 
current controller can track the references under different speed 
conditions.

The RL controller is actually the actor of the agent, whose 
objective is to maximize the reward. For the both speed and 
current RL controllers, their rewards are the negative mean 
squared error (MSE) between the actual value and the refer-
ence value. Then, we can get

                                 (9)

                   (10)

Next, the method for evaluating an actor’s action is the ac-
tion-value function, which can be described by the Bellman 
equation:

Qμ(st, at) = E (r(st, at) + γQμ(st+1, μ(st+1)))           (11)

Fig. 2. Operating point selection strategy.

Fig. 3. The RL agents and their environments.
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This is a recursive function based on the temporal difference 
(TD) method, and it includes a discount factor for the future 
reward. The Q-function can be approximated by a neutral net-
work which is the critic in the agent. During the training, its 
loss function is given as:

Loss = (r(st, at) + γQμ(st+1, μ(st+1)) - Qμ(st, at))
2    (12)

The second term in the loss function depends on the actor 
and critic, which are constantly updated during training, and 
this can introduce instability into the training. Therefore, target 
functions for the actor (μ' ) and critic (Q' ) are introduced to 
predict Q-value, and they are set to slowly approach the lasted 
actor and critic [21]. The calculation of the Q-value requires 
both state and action, making the actor and critic interdepen- 
dent and requiring them to work in tandem. As a result of the 
cascading structure, the gradient can be propagated to the ac-
tor, enabling the implement of the gradient ascent algorithm 
to update the actor’s parameters and achieve the maximum 

reward.
Note that the environment and reward for the current and the 

speed controller should be differentiated, while the remaining 
process is mostly same. To avoid local optima, additional noise 
is added to actor’s output:

at = μ(st) + Nt                                   (13)

It is a crucial aspect of the exploration in RL, and in this pa-
per the noise is used the Ornstein-Uhlenbeck process, which is 
suitable for physical systems with momentum [21].

B. Change of Reward and Feature Embedding

To ensure the convergence of the algorithm, as depicted in 
Fig. 3, all variables will be normalized to the range of [-1, 1]. 
However, normalization will cause the gradient of MSE to 
become very small as the error gradually converges, which 
limits the precision of the training. If the exponent of the error 
in reward is gradually reduced, the gradient of the reward will 
increase in cases where the error is small. This effect is partic-
ularly pronounced when the exponent is less than 1, because 
the reward becomes more sensitive to fine errors. Thus, this 
paper made adjustments to the exponent in the rewards. In Fig. 
4, the training results of the currents (or speed) reward under 
three different conditions are demonstrated: when the exponent 
of error is equal to 2, equal to 1, and equal to 0.5. The system 
parameter values and the normalization values are given in TA-
BLE I, and fixed hyperparameters used for training are given 
in TABLE II.

To facilitate comparison, the actual rewards during training 
in the figure have been uniformly normalized using pow (MAE, 
0.1) in Python. It is evident from the figure that reducing the 
exponent leads to a stable improvement in the actual reward 
during training. The power is a hyperparameter that can be ad-
justed based on the specific circumstance. Due to the fact that 
the exponent becomes too small, it can also affect the gradient 
when the error is relatively large, and a value of 0.5 is used for 
the reward in this work.

Data and features are also important factors that influence 
the training results. In this literature, the features refer to the 
input vector of the network is expressed in the following form:

Fig. 4. The actual rewards during training using different power conditons. (a) 
The rewards of current agent, (b) The rewards of speed agent.

(a)

(b)

TABLE I
Parameters and Values

TABLE II
Hyperparameters Used in Training

Parameters Values

Stator resistance R 6.0e-2

d component of inductance Ld 1.3e-3

q component of inductance Lq 4.0e-3

Permanent flux ψf 125.1e-3

Pole of pairs J 1.324e-3

Moment of inertia R 6.0e-2

Nominal current in 195

DC bus voltage udc 450

Nominal velocity ωn 2000 × π/30

Sampling time Ts 1e-4

Hyperparameters Speed agent Current agent

Number of layers 64/32/32 64/32/32

Activation function of actor ReLu/ Tanh ReLu/ Tanh

Activation function of critic ReLu/ ReLu ReLu/ ReLu

Learning rate of actor 5e-5 5e-5

Learning rate of critic 3e-5 3e-5

Batch size 128 128

Optimizer Adam Adam

Discount factor 0.99 0.99
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Taking the example of the speed agent, the feature of speed 
error in the vector is inevitably important, since the value of 
the reward is directly determined by it. However, the speed 
error may only approach 1 during start-up, and for most part, it 
remains close to 0. This results in a highly imbalanced data dis-
tribution, where the feature is effective in distinguishing high 
and low levels of error, but lacks discriminability when error 
is low. To some extent, the error features of currents also suffer 
from a similar problem. Batch normalization can alleviate this 
limitation, but it relies on the statistical properties of the train-
ing data, which can introduce bias during prediction.

To circumvent this barrier, we leverage the feature embed- 
ding to better distinguish the magnitude of a certain feature. 
One approach is to bin the feature and use an LUT to store the 
embeddings corresponding to the different bins, and adaptively 
adjust these embeddings during training. The effectiveness of 
this method depends on the result of binning, and it requires 
an additional LUT. It is noticeable that, in this work, we use a 
practical solution by normalizing the same feature differently 
and concatenating the results into a vector to represent the em-
bedding of this feature. Thus, the embedding of a feature can 
be express in the following equivalent form:

                  (15)

where ev denotes the embedding of feature v, and v can be any 
feature, such as speed or speed error. The l is a hyperparameter, 
which is related to the dimension of the embedding.

From (15), it can be seen that small errors will be amplified 
after normalization. Additionally, the dimension and normaliza-

tion method can be adjusted based on the results obtained. Fig. 
5 shows the actual rewards obtained by the current (or speed) 
controller during training with features embeddings when l = 
4. The blue line in Fig. 5 represents the same results as the blue 
line in Fig. 4. It can be observed that after adding the current 
and current error embeddings, the current controller has signifi-
cantly improved in terms of reward. Similarly, after adding 
the speed and speed error embeddings, the speed controller 
also shows prominent enhancement. To illustrate the practical 
implementation of our modification clearly, the pseudocode for 
training the controllers is provided in TABLE III.

IV. Evaluation and Results
In this section, to verify our theoretical findings, a case study 

is carried out on a PMSM drive control system, and the func-
tionality of the suggested algorithm will be demonstrated. For 
a fair comparison, same parameters are set.

The training data are generated by training the actor and crit-
ic networks with randomly selected speed setpoints until con-
vergence. To ensure consistency between the training data and 
the real-world system behavior, a physics-based model of the 
inverter and PMSM is constructed within a Python environ- 
ment, along with a discrete-time control system. Specifically, a 
simulation framework resembling Simulink is developed based 
on system equations and numerical solvers, allowing the agent 
to interact with the environment. Practical features such as 
dead-time effects and digital control delays are also preserved. 
As a result, the simulation environment produces outputs that 
match those of the actual physical system.

The speed control agent generates a reference torque based 
on the system states and the reference speed. Meanwhile, the 
current control agent outputs a reference voltage according to 
the system states and the reference torque. Further, the action 

TABLE III
Pseudocode for the Current/Speed Controller

Method: Implementation of the Suggested Controller

1: Initialize the Q and μ
2: Initialize the target functions Q',  and μ',
3: for episode = 1, M do
4: if training current controller, then
5: Initialize the Environment 2.
6: Neglect the (4) and select reward (10).
7: else
8: Initialize the Environment 1 and select reward (9).
9: for t = 1, T do.

10:  Select action at through (13) and simulate.
11: Observe the new state st+1 and calculate the rt.
12: Store(at, st, rt, st+1) in replay buffer.
13: Sample a batch of data randomly from replay buffer.
14:  Update the parameters of Q by minimizing (12).
15: Update the parameters of μ by maximizing (11).
16: Softly update the target functions Q', and μ'.
17: end for.
18: end for  

Fig. 5. The actual rewards during training using feature embedding. (a) The 
rewards of current agent, (b) The rewards of speed agent.
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(b)
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space of the current control agent is continuous and normalized 
to the range (-1, 1), based on the allowable voltage range at the 
inverter output. Similarly, the action space of the torque control 
agent is continuous and normalized to (-1, 1), according to the 
torque range at the motor output.

A. Training with Different Speeds and Loads

First, when the current controller is trained, it is important 
to vary the speed setting in Environment 2 to different values. 
Although the RL controller has some degree of robustness, 
in general, using a fixed speed during training can result in 
significant errors when tested at other speeds. Fig. 6 depicts 
the performance of the controllers at different speeds during 
test after being trained at either random range ([0, 1]) or fixed 
speeds. From Fig. 6, it can be observed that the tracking per 
formance of iq (or id) is greatly affected when the fixed oper-
ating speed is 0.25 in training and the operating speed is 1 in 
test. This figure indicates that employing random speed during 
training or chose a larger fixed speed is necessary to maintain 
desired control performance across the full speed range.

Similarly, it is necessary to use different loads during train-
ing process of the speed controller. Fig. 7 also demonstrates 
that using random loads during training can result in a control-
ler with better performance across different loads.

B. Effectiveness of Feature Embedding

The partially tested performance of the current controller 
trained using the scheme described above is shown in Fig. 8. 
As shown in the figure, the model trained using feature em- 
bedding outperforms the model without embedding in tracking. 
This is consistent with the result of reward during training.

Fig. 9 also demonstrates that for the RL speed controller, 

using embedding results in higher accuracy and less vibra-
tion. In Fig. 9, the speed trajectory using a PI controller is also 
shown. It can be observed that the dynamic performance of the 
RL controller is superior to that of the implemented traditional 
model-based controller, and with the help of feature embed- 
ding, it can approach the performance of the PI controller in 
steady-state.

Fig. 10 presents detailed test results, evaluating the per- 
formance of these two RL controllers under different operation 
conditions. This figure not only demonstrates the reliability of 
the benefits of using embedding, but also highlight two inter-
esting points. In the current test results shown in the figure, it 
can be seen that the model without embedding experiences an 
immediate increase in error when the speed exceeds 1, even 
with random speed range ([0, 1]) during training. This suggests 
that the generalization ability of the model trained with random 
speeds still depends on the representation of the features. An-

Fig. 6. Performance of the current controller at different speed conditions. (a) 
Performance of id traking, (b) Performance of iq traking.

Fig. 8. Performance of the current controller at speed 1.0. (a) iq traking of 
the RL controller with embedding, (b) iq traking of the RL controller without 
embedding, (c) id traking of the RL controller with embedding, (d) id traking of 
the RL controller without embedding.

Fig. 7. Performance of the speed controller under different loads.
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other point that can be observed by comparing D and E is that 
as long as the speed controller employs the embedding, the use 
of embedding in the current controller has little effect on speed 
control performance. This is because for the speed controller, 
the current controller is only a part of its external environment, 
which it needs to implicitly learn during training. However, in 
that sense, if the inner loop cannot accurately track the reference 
value, it will lead to a discrepancy between actual operating 
point and operating point from strategy selection module.

Finally, the comparison results also show that the controllers 
trained by the proposed approach can achieve desired perfor- 
mance to model-based controllers, and have better dynamics, 
while relying solely on data, and making it suitable for sensi-
tive applications such as transportation. In conclusion, this test 
illustrates the capabilities of our method to obtain a high-per-
formance under different operation conditions, and our solution 
works as expected.

V. Conclusions and Future Work
This article demonstrated how to train two cascaded RL con-

trollers in a dual-loop system. By redefining the environments 
of the two agents and training them sequentially, the current 
and speed controllers can converge under different operating 
conditions successfully. Meanwhile, the proposal in this work, 
which utilized embedding to represent the speed, current and 
error, can significantly improve the accuracy of the RL control-
lers when compared to the previous RL controllers. This had 
been validated in both training and testing. Furthermore, the 
accuracy and robustness of the RL controller were enhanced 
by adjusting the reward function and using different operating 
conditions during training. Finally, the results demonstrated 
that our development can offer good tracking performance and 
regulation properties in contrast to two different control ap-
proaches, which enable the system to operate as their enhance-
ment, facilitating its quick adoption by the industry.

Future investigations will focus on issues kept out of the 
scope of this work. First of all, it is expected that the results 
in this work can be extended to other electric drive systems 
under cyber attacks, where exploration would be beneficial 
by addressing an online safety-enhanced deep RL along this 
study line [22]–[24]. Alternatively, how to design a transferring 
learning-based long-horizon MPC solution subject to unknown 
uncertainties is another potential theme that needs further re-
search [25], [26].
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