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Data-Driven Control of Electrical Drives: A Deep
Reinforcement Learning with Feature Embedding

Xing LIU, Dengyin JIANG, and Chenghao LIU

Abstract—Classical model-based control solutions dominated
the research field of numerous electrical drives applications in the
past forming a strong basis, since they usually result in control
approaches with excellent performance. However, the design of
these controllers strongly depends on the available knowledge of
the controlled plant, which often leads to the lack of robustness
owing to model-dependent nature. To take account of the defect,
this work aims to provide a control framework that combines
intelligent data-driven-based control protocol with the deep rein-
forcement learning technique for electrical drives. Specifically,
the two key features of this developed control framework that,
first, a data-driven control architecture along with deep rein-
forcement learning technique that embedding the features of the
agents’ inputs is developed to enhance the performance, second,
the environment for the current agent is reformulated so as to
avoid mutual interference between the two agents (controllers) in
training for both speed and current in a dual-loop system. Finally,
we demonstrate our solution and highlight its superiority on a
case study, and the results presented are promising and motivate
further research in this field.

Index Terms—Feature embedding, intelligent control, motor
drives, permanent magnet synchronous motor (PMSM), reinforce-
ment learning (RL).

I. INTRODUCTION

IN recent decades, permanent magnet synchronous motor
(PMSM) drives, due to their prominent merits, such as high
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energy efficiency, high power density, high reliability, and wide
speed control range, have gained tremendous spread in various
industrial and automotive applications. In particular, its appli-
cations are expanding rapidly, such as industrial robots, electric
vehicles, industrial automation, and power transmission sys-
tems. Various control techniques for PMSM drives have been
extensively explored in the literature [1]-[3]. Among them, the
well-developed method used to control PMSM drive system is
proportional-integral (PI) regulator together with pulse width
modulation (PWM) modulator designed in continuous-time.
To be specific, the PI controller regulates the system state vari-
able to track its desired value by generating a reference voltage
signal to the PWM stage. This approach has a simple structure
and easy to implement which uses a feedback loop to adjust the
control signal based on the difference between the desired and
actual values of the motor speed and currents. Although this
is a reasonable approach, the controller parameters have to be
properly tuned to ensure fast transient response and less steady-
state errors.

A. Literature Review and Motivation

Recently, model predictive control (MPC) is receiving
considerable attention in electric drive systems [4], [5]. The
popularity of this solution stems largely from the possibility to
explicitly address multivariable nonlinear systems constraints.
In electrical drives, MPC solutions can be loosely categorized
in two categories based on whether a modulation stage is needed
or not. Continuous control-set MPC (CCS-MPC) produces the
continuous-time control inputs to the modulation stage in the
controller formulation [6], while finite control-set MPC (FCS-
MPC) replaces the cascaded control structure without the inter-
vention of the intermediate stage [7]. The CCS-MPC method
can be favored in applications where keeping a fixed switching
frequency is crucial. The latter offers an improved dynamic
performance which rely on a sophisticated mathematic model
to predict future behavior of system state and optimize the control
signal. Although extensive research works in the control of
CCS-MPC and FCS-MPC have brought some improvements,
pursuing excellent control performance while ensuring safety
and reliability in the presence of uncertainties remains open for
PMSM drive system [8], [9].

The rapid development of data-driven algorithm has pro-
vided new avenues to overcome the aforementioned inherent
limitation for control system design [10]-[12]. Its main work-
flow is to obtain the parameters of a function approximator (is



X. L1U et al.: DATA-DRIVEN CONTROL OF ELECTRICAL DRIVES: A DEEP REINFORCEMENT LEARNING WITH FEATURE EMBEDDING 371

usually a neutral network) by training it with a large amount of
data based on observable variables of the controlled plant, and
apply it in control process. The data-based supervised method
can be utilized to tune controller parameters, calculate non-
linear magnetic flux, or identify motor parameters. It is even
possible to train a neutral network to imitate the output of a PI
or an MPC controller [13]. However, during the supervised
training, both input and output data for an approximator are
required in these applications, thus it is not possible to directly
obtain a controller through this method.

Subsequently, with respect to another line of research, re-
inforcement learning (RL) has been predominantly studied in
the electric drive field for many years and it has attracted much
attention from researchers [14], [15]. Its workflow is to use the
output of a random actor to interact with the environment, and
train the actor through the rewards (the output of a critic) gen-
erated by the interaction. In this approach, the critic and actor
are both neutral networks. The critic network approximates
the reward through supervised learning, while the actor net-
work maximizes the reward through exploration and feedback.
For general problems in finite action space, deep-Q-network
(DQN) can achieve excellent performance, which makes RL
applicable for controlling inverter switch states [16]. However,
for a complete motor control system, continuous control may
be more suitable, especially for the speed-to-current conver-
sion, which involves continuous input and output. It is worth
remarking that deep deterministic policy gradient (DDPG) has
solved the problems of implementing RL in continuous action
space. It is an actor-critic, model-free algorithm based on the
deterministic gradient which employs some methods such as
experience reply, target network, and soft updates to improve
training stability and solve physics tasks robustly. The emer-
gence of DDPG enables the possibility of directly learning the
controllers for electric drive systems solely through data-driven
approaches.

Some research studies on using RL controllers in PMSM
drive system have been devoted to the enhancement of the
robustness against parameter mismatch and disturbances. An
RL current controller is proposed in [17], where the concept
of PMSM controller design by DDPG is first proved. The au-
thors in [18] exploited an RL torque controller by deploying a
complex reward rule so as to make the operating point adhere
to maximum torque per current strategy. The results in [19]
leverage an RL speed controller to reject active disturbance.
Overall, for PMSM speed (or torque) control, it is possible to
use a single RL controller to track the reference. However, in
this sense, the control strategies for torque and current, such
as maximum torque per ampere (MTPA) or maximum torque
per voltage (MTPV), cannot be guaranteed, unless a complex
multi-objective reward can be designed. On the other hand, it is
still uncertain how to train two independent RL controllers for
the dual-loop system and ensure their convergence while main-
taining a strategy module for torque and currents. Motivated
by these issues, it is expected to exploit a data-driven control
architecture along with deep RL technique that embedding the
features of the agents’ inputs for electrical drives in a dual-loop

system. This consideration encourages the main innovation of
the current research.

B. Main Contribution

Pursuing the aforementioned observations, we will launch
a crucial study on the deep RL control problem, and we hope
that this work lays a theoretical foundation and also inspires
new achievements in the intersection of artificial intelligence
(AI) technique and deep learning control theory. In this work,
we further focus on investigating a novel intelligent data-driv-
en control architecture together with two RL controllers that
embedding the features of the agents’ inputs for a dual-loop
control system. This implies that both the speed controller and
current controller are entirely learned by intelligent agents,
rather than being designed through model-based approaches.
To avoid mutual interference between the two controllers, this
paper adopts a sequential training method, where the current
controller is trained first, followed by the training of the speed
controller. In particular, the current agent interacts only with the
inner loop during training. The convergence and performance
of the controllers have been validated under different operating
conditions. The performance evaluation shows that the RL
dual-loop controllers can achieve desired performance to the
model-based approaches [17], [18], while also demonstrating
better dynamics. Furthermore, this paper leverages embedding
techniques to the controller variables, significantly enhancing
the accuracy of reference tracking compared to [20], and this
method can be naturally extended toward various control sys-
tems. Finally, extensive investigations for the electrical drives
confirm the interest and the viability of the proposed design
methodology.

Compared to existing literature, our method has the follow-

ing novel aspects.

* Building upon the RL control protocol, in contrast to pre-
viously known results, this work goes one step further
and accomplishes both speed and current control in a
dual-loop PMSM drive system relying solely on data. To
be more precise, the sequential training method used in
this article avoids mutual interference between the two
controllers and effectively aids in the convergence.

* Unlike much prior studies, by transforming the variables
into embeddings before inputting them into the con-
trollers, significant improvements are achieved in both
training and testing, which facilitate the alleviation of
performance deterioration. This modification is quite gen-
eral and easy to implement in engineering applications
and can be conveniently extended to other RL controllers,
without sacrificing the simplicity of the control structure.

* Last but not least, effectiveness and performance of the
proposal are validated extensively and highlighted by
benchmarking it against other state-of-the-art control
approaches including RL-based controller and PI-based
controller. The extensive testing results in this paper in-
dicate that when designing intelligent controllers, using
data from various operating conditions in training is cru-
cial. This literature opens up even more possibilities of
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connections with power converter and/or motor control
fields.

C. Outline of the Article

The remaining parts are structured as follows. In section II,
we briefly describe the PMSM dual-loop drive system. Section
III presents the speed and current controllers designed formu-
lation. Meanwhile, we provide a distinctive alternative and
details of the proposed RL methodology. To be specific, we
exploit an intelligent data-driven-based controller along with
deep RL technique. In the following, to further enhance per-
formance under different operation scenarios, our work further
focuses on developing a method that embedding the features
of the agents’ inputs. Further, in order to avoid mutual interfer-
ence between the two agents (controllers) in training, the en-
vironment for the current agent is reformulated for both speed
and current in a dual-loop system. In section IV, we verify its
merits with different benchmark examples from the literature.
Finally, conclusions and future works on the suggested control
protocol are summarized in Section V.

II. PaYSICAL SYSTEM

The iteration of an RL intelligent agent is realized through
interaction with its environment. The iteration of an RL intelli-
gent agent is realized through interaction with its environment.
To address a specific problem, it is crucial to determine the
environment in which the agent operates. In this paper, the
environment in which the two agents (current agent and speed
agent) operate includes physical systems such as a PMSM, an
inverter module and a module for selecting operating point.
Note that the two agents belong to each other’s external envi-
ronment. This aspect will be discussed in the next session.

In a vector control system, a PMSM can be modeled by a set
of differential equations, which is described in the d/q coordi-
nate. It yields:

u,= Ri,+ Ld% - oL, (1)
. dz, .
u,=Ri,+L, e + (L, + vy 2)
T=3 p(wi+(L,~L)ii 3
e 2 p(l//plq ( d — q) ldlq) ( )
do _
JA =TT, )

where u,, u,, i;, and i, are the voltage and current of the motor,
T, and T,, represent the electromagnetic torque and load respec-
tively, and @ represents the machine velocity. All variables in
the equations are derived from observation and measurement
of the PMSM, and the d/q components are obtained through
coordinate transformation. In the completed trained control
system, torques (7, T,,) are not required to be measured due
to the fact that their effects are reflected in changes in velocity.
However, during the training phase, they needed to be observed
so as to calculate the rotational speed in the environment.

A A
g% 17

Fig. 1. Limitation of voltage vector.

A power electronic converter is usually deployed to drive
the three-phase PMSM. The converter is powered by a con-
stant DC bus and, hence, the voltage range at the stator of the
PMSM is limited. When it observed in a/f coordinate in Fig. 1,
the maximum voltage that the inverter can provide is limited in
a hexagon. Accordingly, even though the output of the RL cur-
rent controller is (~1,1), the modulation module still limits the
actual voltage within a feasible range. This is a characteristic of
the environment, which the RL agent needs to implicitly learn.
Moreover, it is interesting to remark that the dead time of con-
verter should be taken into account to ensure that RL actor can
adapt to the real environment [14].

In order to make the PMSM operate at the optimal point, the
desired control solution are necessary after decoupling control
into d/q coordinates. The selection of the operating point must
firstly satisfy the constraints on current and voltage. High cur-
rent can lead to temperature rise and safety issues and, hence,
the current should be limited:

Vv Ltzl' + L‘% = imnx (5)

As for voltage constraint, the operating point voltage must
satisfy the requirement that it can be achieved by the modula-
tion module throughout the complete period. It should be noted
that, unlike the limit in the inverter, the constraint here refers to
the inscribed circle of the hexagon in Fig. 1, with a maximum

1 .
value of V3 uy.. According to (1) and (2), the voltage of

PMSM is small at low speed, so the voltage limit can be ig-
nored. At high speed, after neglecting the voltage drop across
the resistance, this constraint can be expressed as:

1
V3

After satisfying the current and voltage limits, the suggested
strategy for the operating point is generally based on MTPA
and MTPV. Based on (3) and the Lagrange Multiplier method,
the reference values of d/g axis currents under MTPA strategy
can be obtained:

\/(a)(Lde + l//f))z + O)(Lqiq)z = Uge (6)

. Y Vi )
y=- + +1 7
= L1y @)



X. L1U et al.: DATA-DRIVEN CONTROL OF ELECTRICAL DRIVES: A DEEP REINFORCEMENT LEARNING WITH FEATURE EMBEDDING 373

| — MTPC
Loy MTPF
— lnax
— torque
L —=- @
0.5p o
——-
~ 0.0
-0.5F
-1.0p
-2.0 0.5

Fig. 2. Operating point selection strategy.

Similarly, the reference values under MTPV strategy are
given as:

UL~ 4Vl \/ vie By [Fobe )
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q

The operating point selection strategy is illustrated in Fig. 2,
which aims to achieve the maximum torque while satisfying (5)
and (6). For the reference torque shown in the figure (blue line),
when the speed is low, the motor operates at point A deter-
mined by MTPA. Since the speed increases beyond the critical
point of the voltage limit, the system will subsequently operate
along the constant torque curve until point B. At this point,
the current is saturated, and the PMSM is unable to maintain
a constant torque. The motor will work along the current limit
circle to provide maximum possible torque. Finally, the critical
point of MTPV is reached. If the motor continues to accelerate,
it will subsequently operate along the point C to D curve to
fully utilize the voltage and obtain the maximum torque. The

point D is a theoretical point at (- %, 0). During training, the
d

operating point is obtained through look-up-table (LUT) or
analytical method. This strategy module, like the PMSM phys-
ical system, also belongs to the environment that the RL agent
needs to adapt.

III. DESIGN AND TRAINING

In this section, motivated by the aforementioned discussions,
we aim at investigating on an intelligent data-driven-based
controller design issues. To this aim, a data-driven control ar-
chitecture along with deep RL technique that embedding the
features of the agents’ inputs is presented to enhance the per-
formance. Meanwhile, the environment for the current agent
is reformulated so as to avoid mutual interference between the
two agents (controllers) in training for both speed and current
in a dual-loop system for electrical drives. In what follows, the
suggested control design procedure will be discussed in detail.

e
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Fig. 3. The RL agents and their environments.

A. Design Training Algorithm

The overall system is shown in Fig. 3, where the blue box
represents the environment of speed agent, and the burgundy
box represents the environment of current agent. Ideally, the
Environment 2 should include all components in the system
except the current agent. However, in this sense, updating the
parameters of the speed agent will lead to change in the en-
vironment of the current agent, which will require retraining.
Similarly, variations in the parameters of the current agent will
require retraining of the speed agent.

On the other hand, if training both agents synchronously, it
may lead to instability due to their different objectives and the
mutual influence of their convergence. To address the issues
associated with the aforementioned methods, this paper lever-
ages a solution where the current controller is first trained in
Environment 2, followed by training the speed controller in
Environment 1, and as shown in Fig. 3. Since the current loop
is an inner loop, its dynamics should be faster than speed loop.
Consequently, when the current controller is trained, the envi-
ronment of the current agent can be simplified by neglecting
the dynamic process of the outer loop, as long as the trained
current controller can track the references under different speed
conditions.

The RL controller is actually the actor of the agent, whose
objective is to maximize the reward. For the both speed and
current RL controllers, their rewards are the negative mean
squared error (MSE) between the actual value and the refer-
ence value. Then, we can get

w'-w \,
e = = | ©)
o PR , i* i
_ Li—1lg |2 g — bt |2
e (10)
LH LH

Next, the method for evaluating an actor’s action is the ac-
tion-value function, which can be described by the Bellman
equation:

Q'(s» ) =E (r(s,, @) + 70" (5101, 1(5,:1))) (11
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Fig. 4. The actual rewards during training using different power conditons. (a)
The rewards of current agent, (b) The rewards of speed agent.

TABLE I
PARAMETERS AND VALUES

Parameters Values
Stator resistance R 6.0e-2
d component of inductance L, 1.3e-3
g component of inductance L, 4.0e-3
Permanent flux y, 125.1e-3
Pole of pairs J 1.324e-3
Moment of inertia R 6.0e-2
Nominal current i, 195
DC bus voltage u,, 450
Nominal velocity e, 2000 x w30
Sampling time 7, le—4

This is a recursive function based on the temporal difference
(TD) method, and it includes a discount factor for the future
reward. The Q-function can be approximated by a neutral net-
work which is the critic in the agent. During the training, its
loss function is given as:

Loss = (1(s, @) + 70" (s, (5:1)) = Qs @) (12)

The second term in the loss function depends on the actor
and critic, which are constantly updated during training, and
this can introduce instability into the training. Therefore, target
functions for the actor («') and critic (Q') are introduced to
predict Q-value, and they are set to slowly approach the lasted
actor and critic [21]. The calculation of the Q-value requires
both state and action, making the actor and critic interdepen-
dent and requiring them to work in tandem. As a result of the
cascading structure, the gradient can be propagated to the ac-
tor, enabling the implement of the gradient ascent algorithm
to update the actor’s parameters and achieve the maximum

TABLE II
HYPERPARAMETERS USED IN TRAINING

Hyperparameters Speed agent Current agent
Number of layers 64/32/32 64/32/32
Activation function of actor ReLu/ Tanh ReLu/ Tanh
Activation function of critic ReLu/ReLu ReLu/ ReLu
Learning rate of actor Se-5 Se-5
Learning rate of critic 3e-5 3e-5
Batch size 128 128
Optimizer Adam Adam
Discount factor 0.99 0.99
reward.

Note that the environment and reward for the current and the
speed controller should be differentiated, while the remaining
process is mostly same. To avoid local optima, additional noise
is added to actor’s output:

a,=pus)+N, (13)

It is a crucial aspect of the exploration in RL, and in this pa-
per the noise is used the Ornstein-Uhlenbeck process, which is
suitable for physical systems with momentum [21].

B. Change of Reward and Feature Embedding

To ensure the convergence of the algorithm, as depicted in
Fig. 3, all variables will be normalized to the range of [-1, 1].
However, normalization will cause the gradient of MSE to
become very small as the error gradually converges, which
limits the precision of the training. If the exponent of the error
in reward is gradually reduced, the gradient of the reward will
increase in cases where the error is small. This effect is partic-
ularly pronounced when the exponent is less than 1, because
the reward becomes more sensitive to fine errors. Thus, this
paper made adjustments to the exponent in the rewards. In Fig.
4, the training results of the currents (or speed) reward under
three different conditions are demonstrated: when the exponent
of error is equal to 2, equal to 1, and equal to 0.5. The system
parameter values and the normalization values are given in TA-
BLE 1, and fixed hyperparameters used for training are given
in TABLE II.

To facilitate comparison, the actual rewards during training
in the figure have been uniformly normalized using pow (MAE,
0.1) in Python. It is evident from the figure that reducing the
exponent leads to a stable improvement in the actual reward
during training. The power is a hyperparameter that can be ad-
justed based on the specific circumstance. Due to the fact that
the exponent becomes too small, it can also affect the gradient
when the error is relatively large, and a value of 0.5 is used for
the reward in this work.

Data and features are also important factors that influence
the training results. In this literature, the features refer to the
input vector of the network is expressed in the following form:
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Fig. 5. The actual rewards during training using feature embedding. (a) The

rewards of current agent, (b) The rewards of speed agent.

cosf sinf

(14)

Taking the example of the speed agent, the feature of speed
error in the vector is inevitably important, since the value of
the reward is directly determined by it. However, the speed
error may only approach 1 during start-up, and for most part, it
remains close to 0. This results in a highly imbalanced data dis-
tribution, where the feature is effective in distinguishing high
and low levels of error, but lacks discriminability when error
is low. To some extent, the error features of currents also suffer
from a similar problem. Batch normalization can alleviate this
limitation, but it relies on the statistical properties of the train-
ing data, which can introduce bias during prediction.

To circumvent this barrier, we leverage the feature embed-
ding to better distinguish the magnitude of a certain feature.
One approach is to bin the feature and use an LUT to store the
embeddings corresponding to the different bins, and adaptively
adjust these embeddings during training. The effectiveness of
this method depends on the result of binning, and it requires
an additional LUT. It is noticeable that, in this work, we use a
practical solution by normalizing the same feature differently
and concatenating the results into a vector to represent the em-
bedding of this feature. Thus, the embedding of a feature can
be express in the following equivalent form:

i) of)

) )
\ Vf‘l/l) v,

[y

2w | (15)

Vn

e,=

where e, denotes the embedding of feature v, and v can be any
feature, such as speed or speed error. The / is a hyperparameter,
which is related to the dimension of the embedding.

From (15), it can be seen that small errors will be amplified
after normalization. Additionally, the dimension and normaliza-

TABLE IIT
PSEUDOCODE FOR THE CURRENT/SPEED CONTROLLER

Method: Implementation of the Suggested Controller

1: Initialize the Q and u
2: Initialize the target functions Q', and p',
3: for episode =1, M do

4: if training current controller, then
5 Initialize the Environment 2.
6 Neglect the (4) and select reward (10).
7 else
8 Initialize the Environment 1 and select reward (9).
9 fort=1, T'do.
10: Select action a, through (13) and simulate.
11: Observe the new state s, and calculate the r..
12: Store(a, s, 7, 5,.,) in replay buffer.
13: Sample a batch of data randomly from replay buffer.
14: Update the parameters of Q by minimizing (12).
15: Update the parameters of u by maximizing (11).
16: Softly update the target functions Q', and (.
17: end for.
18: end for

tion method can be adjusted based on the results obtained. Fig.
5 shows the actual rewards obtained by the current (or speed)
controller during training with features embeddings when [ =
4. The blue line in Fig. 5 represents the same results as the blue
line in Fig. 4. It can be observed that after adding the current
and current error embeddings, the current controller has signifi-
cantly improved in terms of reward. Similarly, after adding
the speed and speed error embeddings, the speed controller
also shows prominent enhancement. To illustrate the practical
implementation of our modification clearly, the pseudocode for
training the controllers is provided in TABLE III.

IV. EVALUATION AND RESULTS

In this section, to verify our theoretical findings, a case study
is carried out on a PMSM drive control system, and the func-
tionality of the suggested algorithm will be demonstrated. For
a fair comparison, same parameters are set.

The training data are generated by training the actor and crit-
ic networks with randomly selected speed setpoints until con-
vergence. To ensure consistency between the training data and
the real-world system behavior, a physics-based model of the
inverter and PMSM is constructed within a Python environ-
ment, along with a discrete-time control system. Specifically, a
simulation framework resembling Simulink is developed based
on system equations and numerical solvers, allowing the agent
to interact with the environment. Practical features such as
dead-time effects and digital control delays are also preserved.
As a result, the simulation environment produces outputs that
match those of the actual physical system.

The speed control agent generates a reference torque based
on the system states and the reference speed. Meanwhile, the
current control agent outputs a reference voltage according to
the system states and the reference torque. Further, the action
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Fig. 6. Performance of the current controller at different speed conditions. (a)
Performance of i, traking, (b) Performance of i, traking.

0.20
fixed load 0.2
0.15F —— fixed load 1
random load
0.10

errir of

0.05

—

0.00 T T I
0.0 0.25 0.5 0.75 1.0

load

Fig. 7. Performance of the speed controller under different loads.

space of the current control agent is continuous and normalized
to the range (-1, 1), based on the allowable voltage range at the
inverter output. Similarly, the action space of the torque control
agent is continuous and normalized to (-1, 1), according to the
torque range at the motor output.

A. Training with Different Speeds and Loads

First, when the current controller is trained, it is important
to vary the speed setting in Environment 2 to different values.
Although the RL controller has some degree of robustness,
in general, using a fixed speed during training can result in
significant errors when tested at other speeds. Fig. 6 depicts
the performance of the controllers at different speeds during
test after being trained at either random range ([0, 1]) or fixed
speeds. From Fig. 6, it can be observed that the tracking per
formance of i, (or i,) is greatly affected when the fixed oper-
ating speed is 0.25 in training and the operating speed is 1 in
test. This figure indicates that employing random speed during
training or chose a larger fixed speed is necessary to maintain
desired control performance across the full speed range.

Similarly, it is necessary to use different loads during train-
ing process of the speed controller. Fig. 7 also demonstrates
that using random loads during training can result in a control-
ler with better performance across different loads.

B. Effectiveness of Feature Embedding

The partially tested performance of the current controller
trained using the scheme described above is shown in Fig. 8.
As shown in the figure, the model trained using feature em-
bedding outperforms the model without embedding in tracking.
This is consistent with the result of reward during training.

Fig. 9 also demonstrates that for the RL speed controller,
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Fig. 8. Performance of the current controller at speed 1.0. (a) i, traking of
the RL controller with embedding, (b) i, traking of the RL controller without
embedding, (c) i, traking of the RL controller with embedding, (d) i, traking of
the RL controller without embedding.

using embedding results in higher accuracy and less vibra-
tion. In Fig. 9, the speed trajectory using a PI controller is also
shown. It can be observed that the dynamic performance of the
RL controller is superior to that of the implemented traditional
model-based controller, and with the help of feature embed-
ding, it can approach the performance of the PI controller in
steady-state.

Fig. 10 presents detailed test results, evaluating the per-
formance of these two RL controllers under different operation
conditions. This figure not only demonstrates the reliability of
the benefits of using embedding, but also highlight two inter-
esting points. In the current test results shown in the figure, it
can be seen that the model without embedding experiences an
immediate increase in error when the speed exceeds 1, even
with random speed range ([0, 1]) during training. This suggests
that the generalization ability of the model trained with random
speeds still depends on the representation of the features. An-
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Fig. 9. Performance of the speed controller under load 0.75.

other point that can be observed by comparing D and E is that
as long as the speed controller employs the embedding, the use
of embedding in the current controller has little effect on speed
control performance. This is because for the speed controller,
the current controller is only a part of its external environment,
which it needs to implicitly learn during training. However, in
that sense, if the inner loop cannot accurately track the reference
value, it will lead to a discrepancy between actual operating
point and operating point from strategy selection module.

Finally, the comparison results also show that the controllers
trained by the proposed approach can achieve desired perfor-
mance to model-based controllers, and have better dynamics,
while relying solely on data, and making it suitable for sensi-
tive applications such as transportation. In conclusion, this test
illustrates the capabilities of our method to obtain a high-per-
formance under different operation conditions, and our solution
works as expected.

V. CONCLUSIONS AND FUTURE WORK

This article demonstrated how to train two cascaded RL con-
trollers in a dual-loop system. By redefining the environments
of the two agents and training them sequentially, the current
and speed controllers can converge under different operating
conditions successfully. Meanwhile, the proposal in this work,
which utilized embedding to represent the speed, current and
error, can significantly improve the accuracy of the RL control-
lers when compared to the previous RL controllers. This had
been validated in both training and testing. Furthermore, the
accuracy and robustness of the RL controller were enhanced
by adjusting the reward function and using different operating
conditions during training. Finally, the results demonstrated
that our development can offer good tracking performance and
regulation properties in contrast to two different control ap-
proaches, which enable the system to operate as their enhance-
ment, facilitating its quick adoption by the industry.

Future investigations will focus on issues kept out of the
scope of this work. First of all, it is expected that the results
in this work can be extended to other electric drive systems
under cyber attacks, where exploration would be beneficial
by addressing an online safety-enhanced deep RL along this
study line [22]-{24]. Alternatively, how to design a transferring
learning-based long-horizon MPC solution subject to unknown
uncertainties is another potential theme that needs further re-
search [25], [26].
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= 02k @ B:Aadd embedding
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Fig. 10. Performance of the controllers under different conditions. (a)
Performance of i, traking, (b) Performance of i, traking, (c) Performance of
speed traking.
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